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ABSTRACT

This report provides the equations of evolution of an encounter involving a teleoperated

vehicle. The global model contains interconnected submodels describing the conventional exter-

nal primitives of the encounter (base states), suddenly occurring events (feature states), and a

dynamic description of the remote operator (the generalized operator model). This model is

phrased as a set of stochastic differential equations that can accommodate both linear and non-

linear effects. The final section of the report places these results within the context of the multi-

kl problem, and indicates the direction of future research which will yield a quantitative

description of vehicle performance in a rapidly changing environment.
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1. INTRODUCTION

This report presents the initial results of an investigation seeking to determine the perfor-

rTance capability of a "pointing-and-tracking" system incorporating a teleoperated vehicle (TOV)

%hen the remote operator is required to perform several tasks simultaneously. Determining per-

formance in a multitask environment is significantly more complicated than it is in the single

task setting. Not only must the encounter dynamics be delineated in each of the alternative

modes of operation, but the transition properties of the system as it moves between tasks must be

described in a compatible manner.

An encounter involving a TOV may have several primitive elements, and an analytical

description is required for each. The TOV is itself an electromechanical device with lags, gains,

etc. Its primary properties are conveniently phrased in terms of a set of ordinary differential

equations. These equations relate the actuating signals arising from action by the remote opera-

tor to the dynamic variables of the TOV; e.g., position, velocity, orientation, etc. To tne extent

that there is uncertainty in the way that the TOV will respond to direct commands, a random

forcing may be included in the dynamic equation at the TOV.

The tasks which engage the operator's attention often involve objects that are much less

predictable than is the TOV. For example, if the operator seeks to track an evasive target,

uncertainty in target motion reduces the incentive to utilize a high-order dynamic model of target

evolution. Instead, a simple model driven by a large amplitude exogenous process is a more

appropriate description of target behavior.

Similarly, if the TOV is required to follow a prespecified path, the path behavior can be

phrased in terms of an ordinary differential equation, and the operator causes the TOV states to

match the associated path states. When the path becomes less predictable, a stochastic model of

the path becomes expedient.
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The use of stochastic forcing terms is an attractive way to quantify the uncertainty that

exists in how an encounter will evolve. A model of low dimension will frequently suffice to

describe such complex dynamic objects as tanks, APCs, etc. Indeed, the more uncertainty that

surrounds the motion of one of the primitives, the lower the dynamic order needs to be.

In order that this procedure yield useful results, the behavior of the model should duplicate

that observed in tests of the object being modelled. Frequently such empirical data is phrased in

terms of a power spectral density, and the resulting model takes the form of a simple Gauss-

Markov process. First or second order models often suffice to give a close approximation to the

power spectral density.

While this spectrally-based approach is justified as long as only "linear-quadratic" analysis

is required, it may yield a model whose sample function behavior bears little resemblance to those

of the object. A linear Gauss-Markov model has continuous sample paths of great local volatil-

ity. Such a model does not have the inherent flexibility required to produce sample functiqns

having discrete changes at isolated points in time. For example, while a target operating in a

benign environment may be well described- by Gauss-Markov process, a target in a hostile

environment may execute evasive maneuvers that involve sudden and unpredictable changes in

acceleration. Another example of a discrete event which abruptly influences the evolution of an

encounter is that of the sudden appearance or disappearance of a target.

Changes of the type described above can be thought of as a variation in the mode of evolu-

tion of the encounter. A modal descriptor or feature fixes the equations of motion which

currently govern the basic system elements. The advantage of a TOV is that it injects a human

intelligence into the loop dynamics. The human operator has a unique ability to discern the fun-

damental features of a time varying and spatially cluttered sequence of images, and as a conse-

quence, the control becomes contingent on the observed feature process.

While it is desirable to construct a model that matches the behavioral qualities of the exter-

nal portion of the encounter as experienced by the operator of the TOV, it is essential that, the

method of description be simple in delineation, and lead to tractable analytical problems. By
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"simple in delineation" it is meant that the model has few parameters, and that these parameters

correspond to readily identifiable properties of sample behavior. Note that these two attributes

do not always occur together.

In order to lead to "tractable analytical problems," the model type must have a well struc-

tured "calculus" or rules of manipulation. Transfer function models are in this category, as are

the conventional Gauss-Markov models; but neither of these model types is sufficiently compliant

to p:ermit the inclusion of the relevant feature variation.

In this report, the elementary constituents of the encounter will be described by stochastic

'differential equations. Such equations have the requisite properties noted above. Further, the

conventional transfer function and Gauss-Markov models are special versions of a model given in

terms of a stochastic differential equation. As with the more prosaic models, addition or deletion

of elementary components of the encounter is easily accomplished by changing the order of the

model. Further, in contrast to the previous models, it is possible to investigate both linear and

nonlinear operation.

The ingredient that gives a system containing a TOV its unique character is the remote

operator himself. The remote operator provides the intermediary through which the disparate

elements are coupled. To provide a complete encounter model then, tht operator's dynamic

behavior must be quantified. Clearly, the operator model must satisfy the desiderata outlined

above, and it must be compatible with the model of the external portions of the encounter.

Operator models are fundamentally more diverse than are models of electromechanical

objects. The human is capable of so many dissimilar patterns of action that it is quite difficult to

capture all of his attributes in a single, simple model. Yet, an approximation to such a model is

required to complete the overall system description.

The issue of selecting a suitable operator model is of primary concern in this report. This is

a topic with an interesting history, and it is explored in much more detail in the next section.

Suffice it to say here that there is a convenient trichotomy of human action based upon the time

scale or planning horizon of the activity. Models based upon this trichotomy are referred to as
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knowledge based (long horizon), rule based (intermediate horizon) or skill based (short horizon)

depending upon the type of activity which is being modelled.

The first two of the above model classes require an accurate description of the operator's

Lehavior in relatively ambiguous environments Such models are quite difficult to construct, and

even more difficult to verify since the development of a suitable experimental protocol is a for-

midable task.

The third model category is most applicable to the work reported here. These short horizon

models are also called reflexive. This latter appellation will be used here because it more clearly

identifies the reactive nature of an operator engaged in the type of tasks being studied. Reflexive

models are based upe the assumption that the trained operator is functioning in a familiar

environment, and has a well defined objective or objectives. This is a situation often encountered

in pointing-and-tracking tasks. The resulting model includes both response delays and the clutter

suppression that are inherent in the operator response to external events. Such models are

pseudo input-output models in the sense that the input to the operator model is a derived vari-

able which is not the neurological stimulus the operator actually receives. In this sense the

operator's attributes precede the specific operator model in the system description.

Reflexive operator models have been successfully used in several pointing-and-tracking sys-

tems. As will be detailed in the sequel, transfer function models are useful in stationary environ-

rents. and Gauss-Markov models in nonstationary environments. The parameters of the former

are frequently obtained empirically, while the latter may be based on an additional calculation;

e.g., the minimization of a performance functional.

Both of the conventional model types - transfer function and Gauss-Markov - satisfy the

requisite properties of simplicity and analytical compatability with the external portion of th-

encounter state, Unfortunately, neither readily admits the feature variation so much a part of

the TOV application. Feature dependence in the operator model can be introduced on an ad hoc

basis by indexing a set of stationary models to the external features. While this is a satisfactory
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approach when the feature changes are infrequent and unambiguous, it does not suffice for the

situations of most interest here.

This report develops a reflexive model of the remote operator of a TOV. This model is

expressed as a (nonlinear) stochastic differential equation, and thus fits naturally with the other

eilcounter primitives to yield the total system model. The development of the model follows the

approach used in creating the optimal control model, but generalizes this earlier work by assum-

ing that tLe features that determine the realized time evolution of the encounter are both random

and time %arying.

Permitting the system equations to depend upon a changing mode of operation aids in the

investigation of multitask operation of the TOV. Indeed, as an initial approximation, multitask

operation can be placed within the framework created in this report by simply making the

operator's observation of the scene, situation dependent. The discrete nature of task selection fits

naturally within the bounds of the generic encounter model.

The next section provides a review of the operator models which have proven useful in other

applications with an emphasis on reflexive models. Section 3 develops the operator model of

choice. It is a nonlinear dynamic equation that is responsive to feature variation. The model is

not complete in a sense made precise in Section 3, and Section 4 provides a useful approximation

that overcomes this deficiency i- part. Section 5 reviews the development as well as providing

suggestions as to how the model should be completed, and some implications of the model charac-

teristics.

With the full encounter model discussed above, it is now possible to begin a study of rriulti-

Lask operation of the TOV. Because there is no way to verify the model parameters at present,

the full system description provided here should be thought of as a preliminary approximation to

actual system behavior. Nevertheless, a careful study of this model can be expected to yield use-

ful indications of performance sensitivities and limitations.
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2.0 MODELING THE HUMAN OPERATOR

A systematic analysis of the performance of the teleoperated vehicle (TOV) requires a model

for the entire system. The model must include a mathematical description of all elements which

significantly influence preselected measures of performance. From a top-down point of vie%,

important elements are the vehicle dynamics, the characteristics of the environment (e.g. terrain

and target dynamics), the observation system (stereoscopic video and stereophonic audio at

present) and the human operator's control. In this section, methods for quantitatively describing

human performance of representative TOV piloting tasks are investigated.

Section A discusses general man-machine systems and provides an introduction to the issues

involved in modeling such systems. A hierarchy of human functions, organized to reflect the

degree of intellectual involvement required, is identified based on the formalism suggested in pre-

vious works by psychologists and systems theorists In this framework, the role of the TOV

operator is assessed and the features of the TOV environment which shape it are identified.

In a typical TOV mission, the remote operator drives the vehicle, monitors the local

environment and responds to anticipated stimuli in a prespecified fashion. The local environment

is unpredictable; it, may include, for example, path obstacles, sharp turns and multiple targets.

The high quality of the operator's visual information (stereoscopic video transmitted via fiber

optical link) enables him to discern these features and respond to them. The result is a problem

which must integrate existing manual control results with a model for the human's detection and

response capabilities. A historical summary of relevant manual control theory is therefore

presented in Section B. The review is followed by a detailed description of those models which

have received the most exposure and enjoyed the greatest success in application to TOV-related

tasks (e.g. driving, target tracking). In particular, quasi-linear describing function models (DFM)

and the Optimal Control Model (OCM) are presented. The emphasis in this section is on previ-

ous research and its relevance to the manual control aspects of TOV operation.
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A. Hierarchy of Human Operator Activities

A theoretical framework within which the teleoperated vehicle can be systematically

analyzed would complement the ongoing experimental testing of the TOV. For this purpose, a

mathematical model of the composite man-machine-environment system is being developed. Pos-

sible uses for this model include:

* the assessment of current system performance capabilities in multiple environmental or

tracking scenarios;

* the evaluation of the sensitivity of the TOV to various system parameters;

the assessment of the usefulness of system enhancements such as diiver aids or addi-

tional sensors (e.g. motion sensors).

The ultimate use of the system model is an important consideration in the selection of a modeling

methodology. For the present aspect of TOV analysis, the emphasis is on the gross system per-

formance as a result of the interaction of all system elements, and not on the individual perfor-

mance of any single component. The submodels are thus selected, for a specific system

configuration, to reflect the influence of each component on the overall success or failure of the

system. The submodel of interest here is that of the human operator. Its development requires a

careful evaluation of the role of the human operator, a precise definition of the tasks he must per-

form, and an evaluation of the importance of each. A review of some perspectives on human task

analysis provides a framework within which these issues can be addressed.

Johannsen 119821 identifies all human tasks as falling in one of two categories, controlling or

problem solving. Tasks in the first category include classical continuous control tasks as well as

any other action oriented activities which produce system outputs. Models for these tasks are

numerous and well documented. Some are presented in the next subsection. The second category

of tasks, the problem solving tasks, tend to be internally rather than physically dem&nding and

require a higher level of cognitive involvement. Examples include: the formulation and
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modification 'of plans; the assessment of alarm situations; and the development and initiation of

control procedures to combat such situations. Problem solving tasks generally involve the

development, modification and utilization of the broad knowledge base characteristic of human

beings. Models for these tasks are much more difficult to develop since they must necessarily

include many of the psycho-social factors which govern human behavior. Such factors are

difficult to describe in the quantitative manner generally desired by mathematical modelers.

In an attempt to bridge the gap which existed between modelers who were addressing

specific manual control problems and others who viewed human behavior from a more broad

psychological perspective, Johannsen and Rouse [19781 proposed a framework within which

human activities could be organized. Their hierarchical perspective, illustrated in Figure 2.1, is

amenable to a quantitative computer-like interpretation of human functions, but at the same

time accounts for higher level psychological and intellectual activities such as reflecting and plan-

ning. At the lower level of the diagram, the activities correspond to essentially automatic

behaviours. In highly trained operators, such behaviors, once learned, become reflex-like and are

probably performed at the level of the cerebellum. Johannsen and Rouse point out that events

which necessitate these activities tend to occur more frequently than those which activate higher

level processes. The implication is, however, that although the time horizons involved in the

low-level processes are much shorter, they are not considered more frequently by the high level

processor (in this case the cerebrum with its enormous knowledge base and reasoning capabili-

ties). In fact, they are viewed as essentially autonomous. The authors draw an illustrative anal-

ogy to a time sharing computer system in which certain programs are executed by peripheral dev-

ices and rarely require intervention by the operating system.

Johannsen and Rouse additionally acknowledge that human planning itself can be viewed as

a hierarchical procedure. At the highest level, a broad plan is developed to address major goals.

This plan may not involve specific activities or require immediate implementation. As it is exe-

cuted, however, goals are partitioned into lower and lower subgoals. Eventually the times

between subgoal identification, corresponding plan development, and ultimate plan execution
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Figure 2.1: Hierarchical Multi-Level Structure of Human Activities

become very short. The authors assert that at this point the planning is probably unconscious

and that a concise system dynamics model, in terms of quantitative state transitions, "probably

provides a reasonable description of human behavior." This issue is discussed again later in this

subsection with reference to the autopilot of Nitao and Parodi.

Rasmussen [1980] continued the trend toward a hierarchical representation of human con-

trolling and problem solving behaviors with the more precise breakdown illustrated by the block

diagram in Figure 2.2 (Adopted from Phatak [1983]). He phrases the behaviors commonly

identified in the field of behavioral psychology in system theoretic terms. The interesting feature

of Rasmussen's structure is the inclusion of "shunts" or shortcuts which allow the bypass of

unneeded intellectual processes as the state of the system demands. The path indicated by the

first shunt represents the lowest level of human activity, what Rasmussen calls "skill based"

behavior. This type of behavior is exhibited in situations where the operator is familiar with the

observed state of the system; the features he observes have been experienced before and evoke an
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Figure 2.2: Functional Tasks Performed by the Human.

immediate response. As an example, an experienced driver continuously and automatically

adjusts his steering and acceleration to maintain his desired position on the road. Even in the

event of an abrupt curve in his path, his response is essentially automatic.

The path indicated by the second shunt represents the execution of "rule based" behaviors.

These involve higher cognitive facilities than do skill based behaviors because a conscious assess-

ment of the situation is required prior to the initiation of an appropriate action or procedure.

However, once the situation is assessed, the appropriate action is assumed clear. Rule-based

behaviors, therefore, do not require the intellectual capacities involved in the on-line development

of new plans to handle unanticipated situations.

Finally, the highest level of human behavior, indicated by the path without shunts in Figure

2.2, Rasmussen terms "knowledge based" behavior. At this level, the human utilizes his basic

knowledge of the system and accumulated expertise to generate plans and procedures to be used

in the accomplishment of major goals. Due to the lack of detailed information, these plans may
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be broad and sketchy, perhaps subject only to vague verbal interpretation. Behaviors of this

type. are generally exhibited in the presence of previously unexperienced circumstances. Such

situations are necessariiy- characterized b. a low frequency of occurrence.

Rasmussen's human behavioral structure of Figure 2.2 can be included as the feedback ele-

ment in a closed loop sys.em. The result is the configuration of nested feedback loops illustrated

in Figure 2.3. Consistent with the previous observation that changes in the system which require

global replanning are infrequent (or at least slow to evolve), the outer (knowledge-based) plan-

ning loop has a long time constant. Similar time scale interpretations apply to the inner loops.

In their work on an autonomous land vehicle (ALV), Nitao and Parodi, 1985! take the ideas

of "frequency of critical- events" and the associated time scale interpretations one step further.

They propose a hierarchy of autopilot functions which are in fact characterized in terms of the

time horizons involved in the feedback loops. Although these functions are performed by

hardware and software modules rather than a human, the authors' analytical perspective on the

functions required to drive a vehicle in an uncertain and cluttered environment provides a frame-

work within which the role of the human teleoperator can be analyzed.

Figure 2.4 illustrates the space-time hierarchy of the ALV piloting functions. In the outer

loop, the "Planner" software uses a broad view of the world (e.g. terrain and elevation informa-

tion) to generate a global plan. An example is "proceed along the road until landmark 'x' is

passed, then ...". Such a plan is developed initially, and due to its generality, requires revision

only in the event of a drastic change in the world view. Such changes are assumed to occur either

infrequently or very slowly. The loop is characterized by a time horizon on the order of

r > 10 sec, presumably on the order of that of the entire mission. For representatve TOV mis-

sions of the type considered in the present analysis, it is assumed that the type of planning

modeled by this slow outer loop is performed a prtort. Thus, the overall online effect of this loop

is eliminated. Missions in which high-level knowledge-based planning behavior influence the per-

formance are considered anomalous. Examples of situations not considered here are:
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" loss of brakes or other mechanical failures;

* drastic terrain alteration caused by an event on the scale of a natural disaster;

* a change in overall strategic objective.

At the intermediate level of Figure 2.4, a software module called the "Observer" interprets

the general plan in light of additional information collected en route by the on board sensors.

The situation is assessed and the abstract plan converted into a concrete form. The result is a

feasible path, specified in coordinates meaningful to the pilot and sensors, which extends into the

visible future. A localized version of the path is sent to the "mapmaker" which generates a

detailed map of the path in the immediate vicinity of the vehicle. The map includes the broad

path borders, sensor visibility limits, and obstacle information. The latter are generated by a

sonic imaging sensor. This map and additional vehicle velocity data are sent to the next loop,

the functional component of which is called the "reflexive" pilot.

It is the role of the reflexive pilot to guide the vehicle along a dynamically feasible route

within the planned path while avoiding previously undetected obstacles. In Johannser's termi-

nology the pilot must "execute" the plan passed down from the observer. This involves two dis-

tinct levels of processing. In the higher of the two, the reflexive pilot utilizes the detailed local

map generated by the mapmaker to formulate and select possible subgoals. At this level,

subgoals are defined as feasible directions in which the vehicle could proceed so as to stay on tie

path, avoid nearby obstacles and make progress in the overall goal direction. One of these

subgoals is then selected based on a weighting of the factors above and vehicle dynamics. In this

sense, the reflexive pilot is a low level planner. The constraints that govern its activity, however,

are so strict (temporally and spatially) that straight forward mathematical algorithms perform

the subgoal generation and selection tasks adequately. This activity is comparable to the low

level planning Johannsen and Rouse described as "unconscious" and "automatic" in the human

being. The time horizons associated with this reflexive planning loop are on the order of I sec.

This is consistent with both the relatively high frequency of events which change the relevant

local view (e.g. appearance of an obstacle, movement of an obstacle due to erroneous sensing, or
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appearance of a curve in the road), and the need for rapid control action to respond to these

fea ures.

The inner loop in Figure 2.4 contains the control algorithms and actuators. Its primary

fuJzIctions are to respond to small perturbations in the desired path (i.e. to reduce noise), and to

e\ecute control commands generated by the reflexive pilot. The loop is characterized by a very

short time scale (r<.l sec). The functions performed in this loop are on the approximate level of

those modeled by a vast majority of manual control algorithms.

In light of the development above, the role of the teleoperator in representative TOV mis-

sions is now made more explicit. Assumptions about the mission, tasks, human, and environ-

ment which determine the structural requirements of the operator model are presented.

As mentioned above, it is assumed that a global plan for operation is developed a priori and

that for the current analysis, online revisions on the part of the operator are not required. Execu-

tion of this plan is assumed to involve such manual control tasks as traversing a smooth or tortu-

ous path, or tracking a target for the purpose of identification, designation or eventual weapons

release. Simultaneous activities may be required. The human operator is assumed to be well

trained in accomplishing the relevant tasks; he is familiar with the dynamics of the vehicle and

control system, and has performed similar tasks before.

Under these assumptions, the human's behavior and its effect on the system, are character-

ized by the nature of the task environment. His behavior largely reflects properties of the

environment in light of the curent goals [Newell and Simon (1972)]. For example, when the road

is relatively straight and the tracked target is well-defined and exhibits only benign or predictable

maneuvers, the human's control behavior consists of simple automatic responses which are well

modeled in concise control theoretic terms. Given a goal and svstem constraints, the control

methodology is relatively unambiguous and the operator's primary function is that of noise

reduction. His function is characterized by the inner most loop in Figure 2.4.
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The TOV pilot, however, is expected to perform the types of behaviors discussed above in a

natural environment composed of multiple, ambiguous stimuli which can change from moment to

moment. Examples are:

* sharp turns in the road or steep grades;

* the appearance or disappearance of obstacles or targets;

* sudden changes in target acceleration or orientation.

A specific combination of any of these we call a ufeature" of the environment. For the

present analysis, we assume that the features of interest to the driver can be enumerated, and

that he has a notion of how they might evolve. Details are presented in Section 3.

The properties of the environment described above can be compared to those which are

input to the reflexive pilot module in the hierarchy of Nitao and Parodi. They are characterized

by a high frequency of transition relative to the time scale of the mission. In the ALV autopilot,

the mapmaker generates the local detailed map which the reflexive pilot uses to define its control

behavior. In the teleoperated vehicle, the human performs both these tasks. His vision enables

him to generate a map of the immediate vicinity of interest. In this case the "map" includes esti-

mates of features and their uncertainties, and the "vicinity of interest" may be in his path or that

of a target. Based on the map, the teleoperator performs the role of the reflexive pilot; that is, he

generates vehicle or tracking control commands which are responsive to features in his map. As

in the familiar case of an experienced driver who, when he encounters a turn in the road,

automatically adjusts his steering and acceleration, it is assumed that due to experience and

training, the teleoperator's response requires little reflection and is essentially automatic.

Recall the comparison of reflexive planning as performed by the ALV autopilot to skill

based behavior in the human being- In both cases, a connection was made between the time hor-

izons of changes in the world view, and the level of automation of the response. In the human it

was proposed that such behaviors are triggered at the level of the cerebellum and that models for

these behaviors can be developed without taking into account the psycho-social aspects of
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humanity. In the ALV autopilot, sequential software algorithms executed in real time proved

adequate for the accomplishment of this type of function.

From the perspective of the hierarchies presented in this section, it is postulated that the

majority of human behavior exhibited during the execution of typical TOV missions is "reflexive"

or "skill based". Although in a human these classifications can never be absolute or distinct, the

implications associated with them, recast the general problem in a more tractable form. With

reference to this somewhat restricted view of the TOV mission and teleoperator's role, a model

for the system is proposed. The model accounts for a higher level of human control behavior

than most earlier models. The increment is illustrated by the outer loop of the reflexive pilot. In

the next subsection earlier models are reviewed. In Section 3, the present model is developed.
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B. Review of Human Controller Modelling Theory

The use of mathematical modeling as a tool for the analysis :f manned system performance

has been the subject of considerable research for the past 40 years. As a function of the needs,

point of view and background of the researcher, models have been developed based on physiology

[Johannsen (1971)1, psychology ISiegel and Wolf (1969)', cognitive science JNewell and Simon

(1972)1 and systems theory ITustin (1947), McRuer and Krendel (1959), Kleinman, and Levison

(1969)].

Much of the impetus behind modern manual control research came from the pioneering

work of feedback control engineers during and immediately following World War I1. Tustin

1947 was among the first to compare the control behavior of a human to that of an inanimate

feedback device, thus laying the groundwork for what has come to be known as the control

theoretic approach to human performance modeling. The earliest research was dictated by the

development of complex weapons systems (e.g. power driven guns); more recently models for air-

craft piloting jMcRuer and Graham (1963), Kleinman and Killingsworth (1974)], ship piloting

[Veldhuyzen and Stassen (1977)], automobile steering and following [McRuer and Weir (1969),

(1977), Bekey el al. (1977)1, and modern artillery system operation [Phatak et al. (1977), Klein-

man (1981)] have been developed based on the control theoretic perspective.

The driving factor in the investigations referenced above was the existence of a technological

system which could only operate in concert with a human being acting in a manual control capa-

city. Overall, the approach has been particularly successful in quantitatively modeling human

performance in tasks which involve rapidly responding systems with severe constraints on human

performance. For these systems, the models have been successful largely because the operator is

faced with a task which demands his constant attention and response, and allows little reflective

thought. Consequently, his performance is dominated by his control behavior rather than his

reasoning powers or problem solving cappbilities. The TOV system, represents a version of such

a system and is thus a candidate for application of control theoretic methodologies.
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Briefly, the TOV system is unlike previous applications in that it operates in a an unpredict-

able environment that exhibits various features which the teleoperator tries to identify. In the

case that his detection of these features enhances his ability to perform, his role is no longer that

of a simple controller performing a single manual control task in a predictable yet noisy environ-

ment. He must also adapt his response to those environmental features which may result in

changes in the system dynamics. The key observation, moreover, is that his behaviors remain in

the class of "reflexive" behaviors described in section 2.A, and his primary responsibilities in the

realm of manual control (i.e. vehicle guidance and/or target tracking). In particular, it is

assumed that as he becomes aware of features in the environment he reacts according to some

predetermined plan or set of rules. That is, he has experienced the feature before and his response

is essentially automatic.

In the remainder of this section, a discussion of the perspectives underlying the control

theoretic approach and a review of the most popular models which have resulted are presented.

It is concluded with a critical appraisal of their utility in modeling the TOV pilot.



-21 -

The Control Theoretic Approach to Human Operator Modeling

The generic block diagram for a manual control system is shown in Figure 2.5. A few obser-

vations illustrate several perspectives which characterize the control theoretic approach to human

operator modeling. First, the primary goal is a model which is useful for predicting/analyzing

total system performance. The human is viewed simply as one of several system elements. the

input/ output behavior of which must be mathematically described in order that the performance

of the integrated man-machine-environment system may be analytically investigated. Note that

the existence of compatible models for the direct task environment as well as the controlled ele-

ment are thus implicitly assumed, With this approach, the analysis begins with system con-

siderations, (e.g. task goals and human limitations) rather than a direct analysis of the human

element. The human is modeled from a functional or behavioral standpoint rather than by the

more traditional approach in which his performance is synthesised from a sequence of models for

elementary physiological, neurological and/or cognitive activities (e.g. eyeball motions, knob

turns, memory recalls). The resulting models tend to be less task specific than those previously

obtained.

Another idea underlying the control theoretic approach is the characterization oi the human

as an element in a feedback loop who correspondingly adopts characteristics such that the closed

loop system dynamics approximate those of a "good" feedback system. The exact definition of

"good" is of course dependent on the type of model which is used. This is discussed more fully in

the individual model descriptions below.

Based on the control theoretic perspectives established above, numerous methods for

r',presenting and evaluating human performance ii, a wide range of tasks have been proposed.

Tne model structures vary but carn. in general, be classified into three groups. The hrst group

comprises those models which rely on linear system theory in the frequency domain to describe

and evaluate the human's control behavior. fTustin, (1947), McRuer et al. (1967), Anderson

(1970) . The description is based on stability of the entire man-system control loop Of all the
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models in this class, the quasi-linear describing function model and, in particular, the "cross-

over" model of McRuer and Jex 1967! have emerged as the most dominant. These are described

in more detail in the next subsection. As is often the case in applications fields, the second class

of models emerged to reflect the 1960's trend in systems analysis from the use of frequency

domain toward the use of time domain techniques. These models rely heavily on state space

methods to represent human limitations, perceptual processes, and information processing and

control 'decision capabilities. The most sophisticated and well validated model in this class is the

Optimal Control Model (OCM) of Kleinman et aL. 1(1969), (1971)). Since its formulation, this

model has, in varying forms, enjoyed considerable attention and multiple applications. It is

described in detail below. The last class of models includes an enormous number of nonlinear,

finite state and discrete models. The motivation, success, and applications of a few of these types

of models are discussed briefly at the end of this subsection.
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Quasilinear Describing Function Method (DFM)

Quasilinear Describing Function models are the most widely used and well- validated

human operator models in the class of models which apply frequency domain methods to

represent and evaluate the system. They have been highly successful in modeling human

behavior in the limited but important class of stationary compensatory tracking tasks. In these

tasks, the operator observes the error between desired and actual output and by manual means

acts to null or "compensate" for the error. The majority of applications have involved automo-

bile steering and aircraft piloting [see e.g. Ashkenas and McRuer (1962), McRuer and Graham

(1963), McRuer and Wier (1969)]. Models based on the describing function method are unstruc-

tured; they attempt to describe human input/output response by the adoption of a model form

and the selection of model parameters which give the best fit to data available for a given task.

During the development stage there was no attempt to mimic the human's physiological struc-

ture, although certain analogs have been identified since. These are discussed later in this subsec-

tion.

The structure of the compensatory tracking systems typically modeled with describing func-

tion models is illustrated in the block diagram of Figure 2.6. The characteristics of the controlled

vehicle and control actuator are lumped into the block labeled "controlled element dynamics".

The human operator block may include nonlinearities. To the extent, however, that the man-

machine system operates under stationary conditions, and that a linear model can account for a

significant portion of the human's control action, a quai-linear approach to modeling the

operator's response is appropriate.

For the quasi-linear approach, the human's control response, c,, is represented as the sum of

two components;

c, - 11 + 171 (2.1)

where t is the response of an "equivalent" linear element and t is the "remnant". In the
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Figure 2.6: Single Loop Compensatory Tracking System

frequency domain

C(j,) G(jw)E(]j) - N(J ,) (2.2)

where G(jw) is the "describing function" and E(jL,) the transform of the input to the human.

Figure 2.7 illustrates the equivalent block diagram. Signals are represented in the frequency

domain to emphasize the stationarity requirement. The display dynamics are lumped in the con-

trolled element block.
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Figure 2.7: Equivalent Block Diagram of the Human Operator in a Continuous Control Task

The determination of a describing function for a specific non-linear element depends on the

nature of the input. Commonly used input types are periodic (in particular sinusoidal) or ran-

dom with specified stochastic properties. The case of sinusoidal inputs provides a simple, illustra-

tive example of the technique.

Denote the response of a nonlinear element by c, and the input by e. For a memoryless

system their relationship is

c, f (et) (2.3)

If e, is sinusoidal, i.e. e = E sin wi, the response is likely to be non-sinusoidal but periodic with

the same period as the input. It thus has a Fourier series expansion which is the sum of a funda-

mental and all higher order harmonics. The fundamental is related to the input by an amplitude

ratio and a phase shift. This relationship defines the describing function of the element in the

same manner that it defines the transfer function for a linear system. If the nonlinear element is

memoryless, the output is in phase with the input and the describing function is simply the

Fourier coefficient of the fundamental; i.e. the ratio of the amplitude of the fundamental to that

of the input.
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The describing function derived for sinusoidal inputs has another interpretation which plays

an important role in the derivation of the D.F. for random inputs. It is a well-known result of

the theory of Fourier series for L2 periodic functions that the Fourier coefficient of each term

minimizes the mean-squared error between the associated basis element and the original function.

For example. if f(t) has the Fourier sine series

f(t) = E CkE sin kuT (2.4)
k=1

then

Ck = C: min 1f - C E sin kuT H2 is achieved; k = 1,2, (2.5)

where the norm 11 • 112 is the L 2(T) norm

T

9 112 = (4 g(t)2 dt) 1/ 2  (2.6)

Thus, in the memoryless case, the describing function is the equivalent gain, K,,, and

Ke = K: min (4 (t -Keg)) 2 dt is achieved, (2.7)

where e, = E sin wt.

In practical manual control systems, the types of inputs most commonly encountered by the

human are random or random appearing. These inputs have no interpretation in terms of a

Fourier fundamental and higher harmonics, but are instead specified in terms of their statistical

properties. An extension of the interpretation of the describing function as a linear approxima-

tion which minimizes mean squared error is now presented for random inputs.

The problem 'Booton (1954) is to find a linear element with impulse response g (r) such

that

min c 4 g(r)e(t-r)dr 2 (2 S)

is achieved. The function c, again represents actual operator response, and e, his input The
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norm for a stationary second order random process is defined in terms of the probability density

fu ri cion of the underlying random variables as

go(T) i2 (E i g(z) 2 £ g(z)2p(z)d (2.9)

Th. calculus of variations yields the defining equation for the describing function, G(j.u), as the

solution of (2.S):

0

R..(r) = ( g(>, ( ) >0

or (2.10)

,Ahere R,., and *.* are the cross-correlation function and the power spectral density of the opera-

tor inputs and outputs. This usual result for a linear system provides, in fact, the defining rela-

tion for the equivalent linear element in a non-linear system. This is not unexpected since corre-

lations measure the linear relationship of signals. Notice that (2.10) does not provide a computa-

tional procedure for obtaining the describing function, G(j). In particular, 0,.(W) probably

has no analytical representation but must be empirically derived based on experimentation.

Finally, observe that equation (2.10) was derived via an open loop analysis. In a feedback

system like the one of interest here, the analysis is more complicated because the input to the

nonlinearity depends on the response. In this case it is usually assumed that the input to the

nonlinearity is Gaussian. This is reasonable because if the output of the nonlinearity is non-

Gaussian, the lowpass characteristics of the controlled element tend to make it more Gaussian.

Similarly, in the case of a feedback loop containing sinusoidal signals, the lowpass controlled ele-

ment tends to filter the higher harmonics of the output of the nonlinearity and thus restores the

sinusoidal nature of the input signrd.
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With these observations and the equation (2.10), the closed loop analysis outlined below

McRuer (1959)] yields a representational equation for G(jw) in terms of measurable quantities.

The cross spectral density between the operator output and the system input is

G 1

= + GH I 1 GH ,

G

- -4 l GH (2.11)

where the second equality follows because the remnant is uncorrelated with the input. The cross

spectral density between the error and the input is

4 e= I - (2.12)" 1 -- GH * (.2

Thus, dividing (2.11) by (2.12),

- 0 W) (2.13)

Again. (2.13) permits the empirical determination of G(ju) from experimental data for Oc(jw)

and 0 3,(j,).

Based on a series of empirical studies involving aircraft pilots, McRuer 19591 concluded

that most operator behavior could be we)l-fitted by the generic describing function

G(j) K + jr I e (2.14)

with an additive remnant, where the time delay r, gain K, and time constants rL, rl , rN are

estimated. In general it is thought that r, and rN (which has come to be known as the "neu-

romuscular lag"), are essentially inherent physiological quantities, whereas the operator's static

gain, K. and lead and lag time constants, rL, rl, reflect the equalization adopted by the human

to achieve good closed loop performance.
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The generic describing function (2.14) has been successful in describing human transfer

characteristics for a variety of controlled element dynamics, but is by no means fixed. McRuer,

Graharr, and Krendel 11967i note, for example, that for low frequencies rN acts essentially to

increase the time delay and thus combined r, and rN to yield an effective time delay re and the

simpler form of the G(j;);

G (i,,.,) = j W

This form has been used in concert with multiple conventiona, stable controlled elements with

low input frequencies isee, in addition, Levison and Elkind (1967). On the other hand, in some

cases, such as in the presence of an unstable controlled element or higher input frequencies, more

complicated structures have been required to yield adequate matches with experimental data.

One of the more common refinements has been the inclusion of a catchall increment in the low

frequency phase angle to account for the low frequency lags observed in operator data. McRuer

et al. '(1967), (1969)] discuss these more fufly and present gain-phase plots for numerous con-

trolled elements, all of which are matched by some version of the describing function.

Complete specification of a describing function is a two step procedure, the first of which is

the specification of a form such as (2.14) or (2.15). Next, a strategy for the selection of the

parameters K, rT, r, etc. such that the closed loop system exhibits "good" closed loop perfor-

mance is required. A good system in the classical sense should Isee for example Dorf, (1974)':

* suppress disturbances;

" reduce the sensitivity of the system to variations and uncertainty in the elements of

the system;

* provide good servo response over the bandwidth of the inputs;

* provide adequate gain and phase margins.
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These properties are classically analyzed in terms of the open-loop frequency response.

HoL(. AG H

where H(j.,-.) is tht transfer function of the controlled element, and G(j ) is the describing func-

tion. In principle, the goals set out above, or at least a compromise thereof, can be achieved by

choosing the parameters so that the open loop gain is high for low (input) frequencies, and low

for high (noise) frequencies. Adequate stability margins must be simultaneously maintained. In

the "crossover" model of McRuer et al. '1967 these requirements are met by the selection of rl,

rt , and K so that the open loop gain behaves as an integrator in the region where

Ho, (j.') 1 This 0 dB frequency is called the crossover frequency, L,; Mathematically,

HoL. 0 G) = G(j*.,)H(j.,) " e ' near. - -.' (216)

This equation specifies what HOL should look like, but does not indicate an automatic procedure

for the adjustment of r,, rtL, rl, K and r, to achieve the crossover behavior. McRuer and Jex

1967 summarize a series of what they call "verbal adjustment rules" for adjusting the parare-

ters to achieve (2.16). They are not neat, sequential rules but rather guidelines which have been

applied dnd have led to successful esults for controlled elements with '. K s, K s , and

A s,- r) dynamics

Recall, the second component of operator response which results from the quasi-linearization

decomposition process is the remnant. The remnant is that portion of the operator's total

response whic|h is linearly unrelated to the input. It's existence is attributed to such factors as:

" non-linear human input output response due, for example, to indifference thresholds,

* non-steadv pilot beha ,.,r.

• intentional noise Injection b the humanr to pro)e or linearize the "stem.

• st(ichastic variation intrinsic in human response
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Methods for modeling remnant are not as well-developed as for the linear portion of the

DF\1. The existing models generally consist of empirically derived (Ist order) noise spectra

injected at the operator's input or output (see Figure 2.8). The point of insertion is arbitrary and

is not intended to indicate the physical source. The equivalent closed loop remnant, however, is

uncorrelated with the input (and thus any linear transformation thereof). Thus, the power spec-

trum of the output, 4bcc(.,;) , is given as the sum

2
= GIJw) 4,,(w) + 0'fl(.¢) (2.17)G (j)H(j )

G
where is the equivalent closed loop describing function. In the optimal control model1 -,GH

described in the next section, the model for that portion of remnant due to the stochastic nature

of the human's response is made more explicit.
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Discussion

Describing function models have been used to explain a large body of manual control data,

h hus justifying the approximation of man as a linear element in some situations. The best results

ha% e been obtained for systems inolving a compensatory tracking task with a single display and

sinIgle manipulator. As previously mentioned, excellent agreement has been obtained between

measured operator/ system describing functions and those obtained via the crossover model.

Bode plot comparisons for a variety of controlled element dynamical structures appear

throughout the literature isee in particular McRuer et al. (1959), (1969)].

Outside the realm of strict laboratory conditions, describing function models have also been

used to predict human-vehicle performance, to study stability or other problems associated with a

particular manned system, and to generate insight into the mechanisms of human perception and

control. As an example, McRuer and Weir 1671 report the use of the crossover model to inves-

tigate the importance of several visual cues in a freeway driving task. They modelled driver

steering during overtaking and passing maneuvers under good and degraded vehicle and environ-

mental conditions. The baseline case involved nominal vehicle conditions. The second involved a

reduction of air pressure in the rear tires which resulted in notably different vehicle dynamics.

Bo'h systems were second order, but the second was unstable in the open loop and thus required

constant attention by the driver to produce a conditionally stable system. Four crossover models

were developed for each system; one each to model human response to heading angle, heading

rate. path angle, t.id path rate. The rcsulting driver-vehicle Bode plots revealed that heading

rate as an input yielded the best system, especially under degraded conditions. Experimental

data collected for the degraded system also led the investigators to conclude that "the driver's

dominant response (under these conditions) is to heading rate". This corresponded to their

interpretation of the modeling results.

Another example of the type of analysis afforded by models of this type is reported in

McRuer and Weir [19671. In this case the crossover model was used in concert with a fourth

order air frame model to predict pilot dynamics, to derive a correlation between these dynamics
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and the pilot's rating of the aircraft, and to demonstrate how stability problems can be predicted

arid better understood so that corrective measures can be taken. Details may be found in the

reference.

Extensions of describing function methods to multi-input/multi-output tasks have been

developed McRuer and Jex (1969)1, but in general, application of the approach to such systems is

difficult. This is because there are no systematic rules for selecting loop structures (i.e. inner

loops and outer loops), describing function forms within a loop, or model parameters. Thus, any

attempt at application would involve a comprehensive research program supported by extensive

experimentation.

Even when the task of interest is of the single input/single output type, there are some

problems associated with the application of the DFM to problems outside the domain within

which it was developed. The basic difficulty lies in the absence of systematic principles for choos-

ing model structures. The model structures given by (2.14) and (2.15) worked well for the tasks

referenced, but since they have no real physical or rational basis, they provide little guidance to a

modeler addressing a new task. Additionally, the verbal adjustment rules used by McRuer et al.

1967 to find the parameters of the model which achieved crossover requirements are not easily

adapted to new situations Thus, the modeler is faced with a non-trivial parameter selection task

even if he has a model structure which he has reason to believe will work. A new application of a

model of this type, would therefore probably require a large scale experimental program before it

could be used to describe even the gross behaviour of the system with any certainty.

In an attempt to overcome the problems identified above, Anderson 1970 proposed another

frequency domain approach for application to V/STOL aircraft analysis. The model, called

"paper pilot". is a fixed form model. It is based on the hypothesis that the pilot adopts an equal-

izacion strategy which maximizes his impression of the vehicle handling qualities. \fathemati-

callN. a model structure is postulated (that chosen by Anderson for the V' STOL hovering task is

shown in Figure 2.9). then the parameters are selected to minimize some rating function which

weights pilot workload as well as system performance. The problem of choosing model
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parameters is thus replaced with that of selecting a cost functional and then performing a param-

eter optimization (which may itself be computationally burdensome). Anderson's approach was

applied to some pre-existing data for which pilot parameters were available and yielded good

matches to the pilot ratings of their aircraft. On the other hand, when the method was applied

to pred-t. pilot parameters and pilot rating, the predictions of rating were good, but the matches

with measured pilot parameters questionable. The utility of this approach on a different problem

thus remains unverified.

Another limitation of the frequency domain models described above is their inability to

account for operator response in the abserce of stimulation. As an example, if a target disap-

pears temporarily, the human continues to track, based perhaps on velocity estimates, until it

reappcars. These methods have no mechanism for handling such a situation.

Finally, all frequency domain methods have the ultimate limitation that they are strictly

valid only under stationary operating conditions. An interesting aspect of TOV analysis, how-

ever, involves the operator's ability to respond to time varying (in particular suddenly changing)

featurc of the environment which have a direct influence on the dynamical structure of the total

system. Related situations have been addressed by several researchers in the past 'Phatak and

Bekey (1969), Elkind and Miller (1967)1. Their models were motivated by a desire to model

human adaptive capabilities in the event of a system failure which results in a sudden change in

the system dynamics. The model of Elkind and Miller, for example, addresses a situation in

which the human operator controls a system which is subject to sudden, random changes in pro-

'-ss dynamics. They assumed that the controlled system consists of a finite number of linear,

time invariant subsystems, and that the operator has an internal model for each. At a random

time, the system switches from one mode to another They assume that the operator is aware of

possibie transitions and is well trained in dealing with themt. The authors' proposed model relies

on the crossover model to describe the human's behavior between changes, and methods of sta-

tistical decision theory to model his adaptive behavior when a change occurs. The model for his

ada tation consists of three stages: detection, identification and modification. In the first stage
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he detects changes based on a comparison of expected and actual error rate. In the second, he

identifies the type of change which has occurred. Finally, he selects his new control behavior and

rapidly adjusts to the new steady-state crossover model. The model emphasizes the detection

and identification phases; the experimental program was correspondingly designed to verify pred-

ictions of the subjects' times of detection and identification of changes. The control dynamics

%%hich result after identification has occurred are not addressed by this model, but since transi-

tions are assumed to occur infrequently, the dynamics during the transition period have little

effect on overall system performance. In a TOV encounter, system changes occur frequently and

the operator's response during transitions is more critical. Weir and Phatak 1966 addressed the

transition problem with the addition of another stage between the "identification" and "post-

transition steady state" control stages. During this intermediate period, they modeled the opera-

tor as a time optimal controller who acts to null the error which has accumulated during the

detection identification stage before assuming a new steady-state control strategy. The model

explains the bang-bang control behavior exhibited by controllers in situations where large errors

have accumulated.

The frequency domain methods presented in this subsection are not, in general, easily

adapted to time variable systems. A typical TOV encounter, however, is characterized by very

pronounced time-variability; that is by frequent, sudden changes in the dynamical system struc-

ture. The environmental features which indicate these changes (to the operator) may be ambigu-

ous and hidden in noise. Due to their moderately high frequency, the operator's control behavior

during detection and transition stages is reflected in overall system performance. For a system

such as this, a time domain approach derived from that embodied by the Optimal Control Model

(OCM). may provide a more natural avenue for modeling the system.
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The Optimal Control Model

The representative model from the second class of control theoretic human operator models

is the Optimal Control Model (OCM) of Baron, Kleirman and Levison !(1969), (1971)'. Since its

development, the model has been applied to a wide variety of manual control problems with con-

siderable success. An extensive backlog of empirical data validates the hility of the model to

mihiic human performance of manual control tasks. These include, for example, car following

'Bekey (1977)], Remotely Piloted Vehicle (RPV) operation [Grunwald and Merhav (1976),

(1978)', AAA tracking [Phatak (1977)], tank tracking [Kleinman (1981), and V/STOL hovering

:Baron and Kleinman (1971), Kleinman and Killingsworth (1981)]. More recent research is

devoted to the extension of the OCM methodology to supervisory and multiple task control prob-

lem. which involve increased decision making and reduced manual participation on the part of

the human. For example, models have been developed for the DEMON-multiple RPV operation

task [Mulradin and Baron (1980)1 and the AAA flight crew (AAACRU) Zacharias et al. (1982).

These models remain to be empirically validated.

The success of the OCM is attributed primarily to the flexibility of the modeling technique

in treating multi-dimensional, time variable, nonlinear and nonsteady state stochastic control

problems within the well-developed theory of state variable optimal control. Multiple tasking,

monitoring and attention sharing are easily incorporated into the model structure 'Pattipati et al.

(1983), Kleinman and Curry (1977), Levison et al. (1971)] as long as the system can be described

by linear stochastic differential equations. A description of the model, a review of some applica-

tions, and a discussion of the model follow.

The Optimal Control Model is based on the assumption that the well-trained, well

motivated human operator behaves in a near optimal tashion subject to his internal limitations

and understanding of the task. This underlying assumption is not unique to this model. In fact,

the "crossover model" described in the last section is based on a similar point of view. What
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difTerentiates this model is the method for representing human limitations and the structuring of

t 1W model to include components which compensate for them.

A block diagram of the standard optimal control model is given in Figure 2.10. At the top

of the loop is the model for the physical system (actuators/ machine/environment). It is

assumed to be described by stochastic differential equations, in particular, differential equations

driven by continuous random inputs. The state variables in such a model are hereafter termed

"base states". These could include, for example, position, velocity, pitch or angular rate.

At the bottom of the diagram is the block containing the model for the human operator.

The inputs are the sensory information available to the human. These could include visual, audi-

tory and or vestibular data as a function of the application. These "displayed" variables are

assumed to be linear combinations of the base state variables.

In contrast to the unstructured describing function model of the last section, the OCM is a

structured model. It reflects a homomorphic map of the three psycho-motor functions of percep-

tion. information processing and control actuation. The block representing perception transforms

displayed sensory data into that which is perceived by the human. The information processing

block mathematically describes the human's ability to deduce information about the current state

given the perceived variables. Finally, the actuation block models the human's generation of

commanded and realized controls as a function of the estimated base states. It should be

emphasized that although these blocks are organized to structurally maLch human functions,

there is no attempt to define the actual mechanism by which these functions are accomplished.

Indeed, the mathematical techniques employed to model the performance of these functions sim-

ply provide a model structure and a means for parametrically describing his total response. This

has proved to be adequate in many applications. The system model and mathematical forms

contained in each block are now presented.
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System Model

The sistern model is given by a set of linear stochastic differential equations which comprise

the linearized dynamics of the controlled system and environment. Dynamics associated with the

measurement and control subsystems are also assumed to be included here. The equation for the

d\ namic model is

dz1 = Az dt -"- Budt + dwt  (2.18)

where z, is an h-vector of dynamic base states, u, is an r-vector of control variables and w, is an

n-vector of Brownian motion with intensity W;

(dtw) (dui) =Wdlt (2.19)

A and B are (m x m) and (m x r) linear transformation matrices, respectively. They are

assumed time invariant foi ,_onvenience. but the method applies to the time variable case

directlN.

The displayed variables are assumed to be linear combinations of the base state variables;

y,'= Dr1  (2.20)

where D is a linear transformation matrix and yd a p-vector. The vector Ytd should contain all

sensory information available Lo the human which might aid his understanding of the system

state. This could include visua!, auditory and vestibular information as a function of the system

configuration. For example. in an in tu car driving task, the driver observes his relative posi-

tion (with respect to a car ahead or the center of the road), relative velocity and perhaps other

"visual" information. These are easily expressed as linear combinations of position and velocity

states. Additionally. he might physically sense the acceleration of the car as he traverses a shar-

ply winding road, i.e. "vestibular" information. This information is again expressible in terms of

linear combinations of acceleration states. It is clear than an expedient form of the state vector

relative to the sensed information should be selected.



- 43 -

The structure of yd, and the associated problem of modeling it, var) in complexity. In the

case that the display is an instrument panel or a simple display composed of well defined data

(such as one might encounter in a tracking or laboratory control task). the structure of y/ is more

or less self-evident When the display is a cluttered visual scene, however, the composition of the

vector yd is not as obvious. One method for constructing it involves the augmentation of the

standard display vector (i.e. a vector composed of such things as centerline displacement and

relative velocity in a tracking or driving task) with an observation of a "feature" vector which is

composed of additional clues about the system and environment. In some applications, the infor-

mational content of the additional clues can be significant and their inclusion in the model for the

display thus mandatory. In fact., it is the ability of a human driver to quickly extract (with var.-

ing degreeE of certainty) these features which distinguish him from the current autonomous pilots

and enables him to perform more capably in a cluttered environment. This method is discussed

more completely as part of the generalized operator model in Section 3.
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Human Operator Model

The mathematical models used in the OCM to model the three functions of perception,

information processing and control generation are now presented.

Perceptual Processor:

A human operator has certain limitations which interfere with the process of perception,

thus preventing him from making perfect, instantaneous observations and "nterpretations of the

system display. The OCM accounts for these limitations by the inclusion of an equivalent per-

ceptual time delay and lumped observation rmise. The association of the perceived variables, y!

with those displayed, is thus given by the equation

y= Y,_ + V( (2.21)

where v, is a vector of Gaussian white noise which is independent of all other noise processes and

has intensity R,, and r is the equivalent perceptual delay. The noise is generally attributed to

such things as errors in perceptual resolution or central processing, but the mechanism for its

generation is not important to the model. The model is completely specified by the selection of

the noise intensity, R,, the delay r, and the identification of any dynamics associated with the

perceptual process or display.

R, reflects the quality of the information in the display vector as perceived by the human.

The value is, of course, display dependent. There are no set rules available for its selection, but

certain guidelines have been suggested. In general, R, is chosen t- be proportional to the mean

squared value of yd;

( RJ P F, (2.22)

which defines PI, as the noise/signal ratio of the displayed variable type. A value of PP

corresponding to -20 dB Kleinman et al. (1971) has been appropriate for a variety of single axis

tracking tasks. If indifference thresholds are important, they can be accommodated at this point
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by the use of a more complex form of (2.22). Another guideline for the selection of R, in complex

multivariable tasks is given by the attention sharing model of Levison et al. 1971,. The model is

based on the assumption that P. is essentially constant and that P, the noise/, signal ratio associ-

ated with the ith display variable may be selected as

Po
P, P. (2.23)

where f, is the fraction of attention devoted to the task, and fJ is the subfraction of the

operator's attention given to (Ye).

'alues for r have been shown to be essentially constant and on the order of .2 ± .05 sec.

Kleinman et a. (1971)'.

Some systems exhibit perceptual bandwidth limitations as a result of the dynamic proper-

ties of the display or internal processing by the human. In these cases, the associated lags can be

incorporated directly into the model for the system dynamics, (2.18), and need not be treated

separatey here.
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ly, form ation Processor, 'Control Generator:

The assumptions about the human operator's task comprehension and control strategy

1, ,ich admit the formulation of the 0CM are now made precise. The operator's control objective

to apply an input to u, to the dynamic system (2.18) so as to minimize a cost functional of the

furni

J,(u) Ejf (z;,Mz, -4 ,'u,)ds 1 Y, (2.24)

where V, is the filtration generated by the observations of the system, a o { yP; s , t }, y,*, is

as in equation (2.21), and Al and N are appropriately selected, positive semidefinite and positive

definite, respectively, weighting matrices which should reflect relative costs associated with the

,arious states and controls. In applications, the parameters of these matrices are the primary

means by which the modeled operator response is shaped to match actual data. In some applica-

tions. a %eighting on control rate, ut is also included instead of or in addition to that on u,. This

issue is addressed in the discussion.

The control selected to minimize (2.24) must be chosen from the class of corresponding

adrissible controls. P. This class of functions is defined by the following properties !Tse (1971)':

First, the function at any time must depend only on past observations. Mathematically, u(t,y)

must be Y measurable. It must thus have the form

U(t,y) = 8 < t) (2.25)

Such a control is termed non-anticipative. Equation (2.25) is stated equivalentli in terms of a

stopped functior

y0 t, < t

Then,

(,(t,y)) (2,26)
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%here -)(.,.) is a mapping from R x C e t, T' - R , and C P 7t, T' is the class of continuous

functions from it., T -. R P. Second, a condition which assures the existence of a unique (in pro-

bability law) solution to (2.18), (2.21), such that

E{ x, _Y, )< M,.Y

and

E fI U, k d r  Y, < oc s t < T, k , 0 (2.27)

is required. A uniform Lipshitz condition on -1

li' (t,g)--y(sf ) 1! < a 1 f -g 1 ; f ,g Cp(t0 , T) (2.28)

%here is the usual sup norm

= sup II1i
ifli.. T:

and is the Euclidean norm, provides a sufficient condition.

Thus, the problem is summarized as finding a control of the form (2.25), satisfying (2.28).

which minimizes (2.24) subject to the dynamic constraints (2 18), under the additional assump-

tion that the human has an internal model for the system. The separation principle of stochastic

control provides the framework for its solution.

THEOREM 1 - The Separation Theorem, adapted from Fleming and Rischel. Ch. V 1975

I. Equation for the conditional mean: Suppose z, and y, are stochastic processes which satisfy

di, = (Ax, - Bu)dt dw, (229)

dy, - Dx, dt - dt, (2 30)

where y, is observed, and w, and v, are independent Browniap motions. Let Y, denote the

observation o-algebra. Y, = a { y, s < t }. Then, the (onditional mean i, - E(x, VI).

obeys the linear stochastic differential equation
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di, = (Ai, + Bu,)dt - PD dv,, (2.31)

where v is the "innovations process" defined by

dvi 4 dy, - Di, dt (2.32)

and P, is the error covariance, E { (z, - i,) (z, - ij)' }, and is non-random.

2. The cost functional (2.24) can be rewritten in terms of the conditional mean as

J,(u) E{J (i, 'Mz, -+ u, "Nu,)ds 4 Y + Z (2.33)

where

Z, = E{I i,'Mids Y, = f tr(MP,)ds I

3. Let v denote the class of admissible controls. The original stochastic control problem with

partial observations,

min E f (z; Mx, , u; Nu,) d, YI s.t. (2.29), (2.30)

thus has the equivalent formulation as a stochastic control problem with complete observa-

tions

min E f (i;Mi, + u;Nu,)ds Y,} Z, s.t. (2.31)

Furthermore, since Z, is independent of the control, the problem may finally be expressed as

the stdndard stochastic linear regulator problem
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min Ej f (it Ai, - e'.% ds Vs.t. (2.31) . 2.'04)

The problem has thus been transformed into a linear stochasti( control problem with acces-

sible state and quadratic cost. The solution to this problem (2.34) is well-known e.g. Fleming

and Ri, cnel Chf. %*1. 19753

(t,i,) -N'B 'K1 ii, = L *ii (2.35)

where i, is as above, and K, is the solution of the matrix Riccati equation

K', - HE A A4'K, -K, BN B' H - V (2.36)

A ith boundarN condition A I 0.

The proposition is stated for the case of nondelayed observations. Kleinman '1969 showed

that in tne time delayed case, the separation property still hold-, with, the mmse filtered estimate.

=E 'x , }replaced by the mmse predlictod estimate, i,' x Y4

The significance of the propositior. is as follows: The original problem (2.Ik) (2.21) (2.24)

ca b slvd as two separate problemns, orif of Psi iniation and t he,- other of control First, find

he mrnse estimate of z, given thie obe' ~I~aid second, so)\ *' ih( cqwiiuroe si chcv.rii( on

trol problem with accessible state via equations (2 33). (2.36). In accordance with the block

diagram in Fig. 2.10. the two phases of solution are now addressed in the individual blocks

termed 'Information processor" and "control generator." respectivelv. The equations associated

Air.1h each by the 0CMI are now presented.

Information Proro-9or

Th- injforniia)ior preiressitig block, fthe hefart of thc ( M . oiii i i hairr;an-Bij( hhiley

c'asc 4ed .%it h an optima predict or. These generate the ni nse f-'!irmat(es of the N,' icij stateis

g'ert hp dela ~ed . t. 015. oberv aniloi, y' Est imrat e, of t he near quarvd . ic cr a.' t In the state

estimates are also generate(]. thuls enabling computation of the op! nial (o- \-a Ftqiation ('2331.
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The use of the Kalman-Bucy filter implicitly assumes that the operator knows the linearized

state %ariable representation of the system dynamics and external stochastic disturbances; he has

an internal model. This assumption is strong, but experience has shown small errors in the model

can usuall% be compensated by 'the inlr duction of noise into the model at the process and motor

le\els. The human's model for the system is thus given by

dr, (A, Bu,) di -dw, (2.37)

,A here

E { d,, du } =Wdt,

all other quantities have the same interpretations in Eqn. (2.18), and A and B are "close" to A

and B

The human's observation of the system is given by the output of the perception block;

YP Dx 1 I (2.38)

where equations (2.20) and (2.21) have been combined. Equation (2.38) has the equivalent

represent a, itri

dy, - Dz, _,dt - dr7.-, (2.39)

A here . h t.h sol tion of the equation

d y = P

dt

and r, " the Brownian mnolion process from which the white noise t is derived. Formally,

dr/1

dt

and

dr7, d rl1" = R dt

Given the pair of equations (2.37), (2.39), an equation for the evolution of the mmse estimate of

Z, given the observations { y, , s t t } is desired. Kleinman 1969 showed that. the solution of
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this problem is obtained as a cascade combination of a Kalman-Bucy filter and an optimal (least

me,,,,->quare) predictor. The derivation in the reference is complete and only the equations for

each stage are presented here.

In the first s tage, the best mmse estimate of the delayed state, x, - ,, given the observations

up to time t. { y, s < t }, is determined. Since dy, = Dz,-_dt - d?, define a new observa-

tio

Zt ]t 'r •

Then

dz, = dyj , = Dxdt -r dr, (2.40)

The problem now assumes a more standard form and can be restated in more standard terms.

That is, find the best mmse estimate of X, given the observations { y,: s ( t }. The solution to

this problem is known to be given by the conditional mean,

-_mmse - E _,

where Z_ is the observation a-algebra, a{ z,-, s < t }. The well known Kalman-Bucy filter

gives the equation of evolution for this quantity via the pair of equations

dit r= (A i-,-T-- Buj dt P -,D 'R 'dv ,  (2.41)

P = APt -
+
- PiA °  W- PD 'R-DP, (2.42)

where v . is the "innovations process" given by

dv, = dz, - Cz dt

and P, i! the covariance matrix of the error, i, z, - i,. Observe that the equation for the

error covariance matrix, P,, is an ordinary differential equation. and P, itself a non-random pro-

cess. This is a direct consequence of the assumption that the state vector is composed strictIN of

"base" states. That is, the disturbances are strictly of the Gaussian white noise type.
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In the second stage, the optimal linear predictor generates the present state, it' from it,

according to

= A+ -t But (2.43)

%here i.,' denotes the least-mean square prediction of z, given observations delayed by r,

Iy, S S -).

This completes the solution of the first problem associated with the implementation of Pro-

position 2.1. Notice that the K-B filter reflects compensation on the part of the operator for his

perceptual limitations as modeled by the lumped observation noise, v,. The optimal predictor

compensates optimally for the delay.

Control Generator:

This block models the operator's generation of the control. A "commanded" control is gen-

erated by the equation

u= - L it CZ.44)

where L is the matrix of optimal gains generated as the solution of the pair of equations (2.35),

(2.36). To account for the human's inability to generate perfect control responses, an equivalent

"motor" noise is added to u[. The result is filtered to account for possible bandwidth limitations.

The motor model is thus given as

TN -4g + ul = u[ + v," (2.45)

where v,' is assumed to be Gaussian white noise with intensity S, and TN is the so called neuro-

muscular lag which has been found to be an essentially inherent parameter on the order of

.08 - 0.1 sec. S, is defined by

S, = P,,M E u2J
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\ herc Kleinman 1971 reports a typical value of P,. = -25 dB. The neuro-muscular dynamics

reflected by equation (2.45), can be incorporated directly into the dynamic model (2.37) by the

dugmentation of the state vector. X, ,witj u t to yield

d 4 B ulc dt 10 dtu' (2.46)

0 TN T,T,

which has the same form as (2.37). Observe it is the commanded control u, which is actually

selected to minimize (2.24).

Discussion

The Optimal Control Model provides a mechanism for describing human controller response

in a non-statzonary environment. The model is a simple parametric one: the structure is fixed

arid the parameters are then selected to shape the operator's modeled response to match experi-

mentai data. In this sense, the OCM is not far from the describing function models discussed

above. Recall the two step procedure for obtaining the DFM: first, a describing function struc-

ture is selected: and second, the parameters of the model are chosen to give the best match with

experimental data. In fact, one would hope that in a stationary environament Yhe two models

would converge to yield a single human operator model. The above expectation, although

theoretically reasonable, may not be strictly realizable with the OCM in its current form. This is

because the OCM is not necessarily parsimonious. Other structures could exist which are equally

adept at matching measured human response data. Phatak '1977 , for example. proposed alter-

nate optimal control structures which involved some simplifications to the standard model.

Examples of modifications and simplifications used by him and other,. include:

0 elimination of the perceptual delay:
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* aggregation of the motor and observation noise;

• revisiorn of the terms in the cost functional;

0 reduction of the number of displayed variables the human is assumed to perceive.

An argument for the elimination of the perceptual delay is as follows. If the environment is

predictable and the operator well-trained, he is able to compensate for the delay and minimize its

effet. The same function is accomplished mathematically by the optimal predictor in the infor-

mation processing block of the OCM. For this reason Phatak and others (e.g. Baron and

Levison 1973) have eliminated the delay from the model. Other researchers !Hess (1977). have

chosen instead to approximate the delay with a Pade approximation which is then incorporated

directN into the system dynamics. The elimination of the predictor from the model in either case

greatly reduces the computational burden in application. Aggregation of the motor and observa-

tion noise is similarly justified with an argument that the operator is well-trained.

I. the OCM presentation above, a weighting on control (u,) was included. This was the

case in the original development, but in this early work, 'Kleinman (1969), the neuromuscular

lag w%-as not included in the model. Subsequently, the model's developers, Kleinman et al. T1971".

included instead a weighting on control rate. Then,

T

J, = E f (zMM , u',Nt,)ds I (2.47)

This formulation gave better matches with experimental data. Additionally it was noted

that highly trained pilots rarely make rapid control movements and thus the inclusion of this

term in the cost functional is physically reasonable. The result of this revised cost functional is a

control law of the form

ru.(t) u,(t) - - L i -  ,M, ,m(1) (2.48)

where ti,,,(t ) represents the best estimate of the motor noise u.(t ), I,, is a matrix of optimal
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gains, and all other notation is as previousl defined. r is functionally related to the weighting

in 12.47). The motor noise is assumed to be a (wide band) first order noise piocess generated by

U,,1(t Uu )= ( t m(t), (2 49)

w here t ,(t) is Caussian white noise with covariance S. At this point, in the interest of

simplification, two assumptions were made. First, based on evidence reported to exist by Klein-

man et al. 1971 , it was assumed that the bandwidths of u,(1) and u,(t) were approximately

A*
equal. Then. - 1, r N. Second, it was assumed that 1,ti,<(t)<« L it and may thus be

neglected. This is a reasonable assumption since u, (t) is a wide band process and at any time

ti, t) 0. These assumptions yield the simplified sub-optimal control law

rVut - = - L it - ,(t) , (2.50)

which "introduces" the neuromuscular lag discussed earlier. In this formulation, the weighting on

u (i.e. the matrix N) must be adjusted to yield an appropriate value for rN.

Since the evolution of the model outlined above, the existence of the contrct dynamics or

neuromuscular lag given by (2.50) has been fairly well acknowledgej. Many researchers since

Bekey (1977), Hess (1977), among others have opted to include the lag expliitlv. Correspond-

ingl . the. introduce a weighting oui actual control in the cost functional (u, ). This approach is

expedient because:

" 7% is a relativeli invariant parameter from task to task. Its explicit inciusion thus al-

lows it to be selected a prtor? and then modeled dire:tl in the system dynamics.

* The inclusion of a weighting on control rather than control rate simplifies the initial

parampter selection process. In this configuration MI and N 'nay be chosen to reflect

maxiuir ilh',wahle devtations in th- vi rnp i , ariables. I tese are based on physi-

ca) considerations and often irndi ate a good Initial estiniate of the parameters.
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The parameter selection process is discussed further in the applications section which fol-

io. S.

The information processor block of the OCM produces, in addition to the best estimate of

sN stem state. it, the error covariance Pt, and the innovations process v. These quantities have

important implications beyond those discussed above, and their availability contributes to the

flexibilitv of the OCM approach. For example, the innovations process provides a key quantity

used in signal processing to dtect events (such as system failures). Additionally, i, and P,

together represent a sufficient statistic (in the case of Gaussian white noise disturbances) for

describing the human's understanding of the system state. They thus provide the key variables

upon which decisions about system operation can be made. For example, in a situation involving

multiple tasks or a cost on monitoring, a strategy for monitoring is required. This strategy

would be determined based on i, and Pi. Similarly, consider a problem in which the human has

the option of operating in one of several modes (for example in a computer aided mode or one in

which additional sensors or tracking aids are exploited). Then again, his choice of mode should

be based on i, and P,. More basically, in a simple two-task control situation, these quantities

determine which task he should address. These ideas are suggested and expanded upon by Baron

1984 and White 1981 among others.

Applications

The Optimal Control Model has been used both for prediction of human behavior in known

dynamical systems and as a model for the human element during the design and evaluation

phases of system development. A review of some of the applications which verify the model

structure and are relevant to the puinting and tracking aspects of the current task, provides a

perspective on the status and utility of the OCM.

The baseline verification and validation studies were performed and reported by Kleinman,

Baron and Levison 1971 . The experiments consisted of a compensatorN tracking task in which

the human was given an explicit display of tra king error, e. It was assumed that the operator
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could extract error rate e, and e was thus included in the model display vector y,4. \elocit

(-) and acceleration (--) control were investigated. The results for both sets of vehicle dyrarn-

ics yielded good agreement between experimental and model predictions of mean-squared closed

loop performance quantities (e1 , et, and u, ) Additionally, plots of equivalent human describing

functions derived from the OCM vs. those measured, and of computed vs. measured human rem-

nant spectra were in excellent, agreement. It should be noted, however, that the 0CM parame-

ters in this study were adjusted on line to yield the best matches with the data. Based on these

initial results, it cannot be concluded that the OCM is predictive nor that the parameters are

independent of the body of data. The significance of this set of experiments is simply that the

OCM is capable of reproducing many aspects of human response. The human bmitation parame-

ters used in this set of experiments are tabulated in Table 1.

TABLE I

Human Operator Parameters for Base Line OCM V and V Studies

dynamics r P [I

k s .I sec. .08 sec -20dB -25dB

k s, 21 sec. .1 sec -20dB -25dB

Kleinman et al. 1971! postulated that the parameter values shown in Table I are typical for

rman systems and are not. in general task dependent. This notir, , ' c(0-sistenl with results

reported previ,.usly by M(Ruei ei al 1959.. 1967 for associated variables in the I)FM. 'h )

reported r =.15 sec. (t-.05 intrasubject) and 7, = .1--.3 sec with .1 being typical for many teasks

and input types. Other data support this hypothesis. Baron. Kleinman and Levison 1971 for

example, used the values r = .15, rN = .1. P, = -20dB and P,, 25 dB to predict the effecis
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f'arlges iM aircraft stability derivatives on rrns hovering performance in a VTOL vehicle. The

r paramieters in the OCM (i.e the weighting matricies in the cost functional) were adjusted to

rti, : the nature of the task. The pilots were instructed to minimize position error, so a weight-

, included on that state variable. Additionally, as a result of the knowledge that well-

lrd..vd pilots avoid excessive altitude changes, a weighting was included on pitch rate. The rela-

tive %keighting of the two is somewhat subjective. In this case it was based on some existing

experimental data which reflected the balance of position error vs. pitch rate error in a nominal

flight configuration. The results of this model were compared to measured data obtained from a

ide range (in terms of aircraft parameters and disturbance conditions) of simulator experiments.

In most cases. the model's predicate performance agreed quite well (within ± la) with the data.

Note that a fixed set of operator parameters was used for all conditions. A complete set of plots

for the -arious air frame characteristics are presented in the reference along with a discussion of a

few anomalous points which occurred a! the extremes of the (airframe) parameter changes. This

example illustrates the OCM parameter selection process, provides an example of its utility, and

supports the hypothesis that the parametem' associated with human limitations may be relatively

invariant for many task types.

As another example in which the OCM was applied in a predictive manner, Kleinman and

Perkins 1974' used the OCM in an anti-aircraft (Vulcan Air Defense-VADS) tracking loop which

exhibited rapidly varying system dynamics. The pilot was required to track both azimuth and

elevation. For each axis, a five dimensional state vector reflecting second order target motion

and a third order gun-sight-hand controller model comprised the system dynamical model. The

human operator model was the OCM with limitation parameters selected a priori based on pre~i-

ous data as rT = .1 sec, r = .2 ± .05 sec., P. = -20dB and Pm -25dB. The cost functional

weighted tracking error. Again, th- model predictions of tracking ,'rror covariances throughout

the trajectories matched well with human tracking error obtained from experiments.



Ih ft 'M \1 a - tenr used in It ian y ot her trac kI ig anid weapon systemns appl ica.-)ns %k h Ich are

r, i de, a. Ird herte liar e arid DIlIlow% 19741 ). K lcinmat (1977) 'Ihe latter reference present s a

-II t Ia N t horo u g t 3ta t istic alI c or r Ip a r 1oiI o f t hr eet a r I i a r ik v st emrrs Thc OCNI wvas u~ed to

g. ricradt an eflsernbit- of tracking error time histories for ui-,1 s-,stemi arid each of sev eral) targe!

rajeco-ies. The rnodei-generated data were compared againist eriseriibles of equi~alcirt data Wdt)

0 )t aite( Iin field tests. Several methods of statistical comparison (e-.g ('rserrible meani arid stari-

dard df-\ iation anaiysis, temporal anah sis. and for stationary target trajectories. frequenicy

dlomain analv is were used to compare the results. Addlitionally subjective comparisons of indi-

v.iduai runs .%ere Impressive. The values for the 0CM parameters used bN Kleinmnan in this

application were noi reported. He did comment. bow~ ever , t.hat I h& orik hum~ar lirriitat ]or

parameter w hich required adjustment from one tracking system to aniothier was the motor nioise

parameter (P,,). This need is attributed to the great variation in the manipulator character ist ics

o' t ,e TOWN, DRAGON and TLV systems.

As a final application of interest in the current discussion, Grunwald and MerhaN (197bl).

1 9>)1 ue the 0CM to model manual % isual field control of a (low-flying ' remotely pilot ed

vehicle RPVI The model was originallk dev eloped to model the manual lateral control of the

RP\ di'Nng . nominally straight reference path A five degree of freedom simulator v~as a~aiiahIl

for exper~rmental validation of the models. It was used initially, however, to investigate the effect.

(oritraiflts on the visual field on. pilot behavior. Experiments were, performed in Ahich the pilot

was permittedl to view& the road at onlv a single distance, at multiple distances, and hinallv in an

iuriroriqt airned fashion. The data inricat ed that his behiav ior inr the t ~o look t rig-distance scenario

close). 'iatched hi, behavior iT) The unconstrained ,-)PAkirig scenadrio. For this reason. one- arid

two,- looking-clistarire models Aerp developed T'ie-tCS Wpru in(o(rpioled int Oie ((', frarne~kork

for i ri es' gat ioni. T he \ F1I rrodle, i n tded ,uol ii # ,i riabl(- --s lateral de).iatioi fromt the

rplerence path. Yaw and s ip angles -et ween t he de-~i red pat h ard .eh i(le ax is. ai-1 velowiNx. In

the ftirst stage of thle i ri vestigation a pararfletrno st id %~as perftirriierl to det errutire heif sen-sMIt i.

of v arious model responses to variat ioTP IT rmrode'l parametiers S 'ir h sensi liti es arv required i
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the pararneters are to be accurately estimated via experimental procedures. In the second stage,

thu resu;ting one- and two-distance models were compared to experimental data. The investiga-

tors coric'uded that the two-distance VFI model is a valid representation of the visual field con-

rtr, ta4 Aith unconstrained viewing.

In tne second reference, the same investigators determined the extent to which the human

operator used the higher order information in the state (e.g- lateral velocity and acceleration).

This information was used to evaluate the effectiveness of augmenting the display with explicit

indicators of such quantities. These display aids were evaluated for various dynamical condi-

tions. Again, the model results were matched with experimental data to validate the model. The

authors concluded that "the analytical model proves to be a convincing representation of actual

Man-machine visual field control," and that "this model proves to be an effective research tool for

the prediction of system performance in the development and evaluation of display aids." The

human operator parameter values determined in these studies are summarized in the reference

and a complete discussion of the types of display aids considered is presented there.

The references discussed above are just a few of the many which indirate that the OCM can

be a valuable tool for the analytical investigation of the performance of systems which utilize a

human controller. The teleoperated vehicle is such a system, but its nature is such that the exist-

ing forms of the OCM do not result in an adequate representation for th: human teleoperator.

This is due to the unpredictable qualities of the environment, in concert wi--h the availability of a

(visual fie . display which enables the man's detection of them. Although visual field displays

were used in some of the applications discussed or mentioned above, in the3e cases the ability of

the human to extract information from the scene which was not directly related to the base states

was not relevant. In the case of the TOV, however, this aspect of the human's abilities is critical.

A mode! based on the OCM methodology, but which accounts for these higher human capabilities

is presented in Section 3
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Nonlinear, Discrete, Sampled Data, Finite State Models

A % ' Ide varietv of models have been developed to address particular types of human control

tasks. or specific aspects of human behavior which are not well-handled by the standard models

i iscussed abo'e. BekeN 1962 for example, proposed a sampled data model for human response.

The model essentially used the DFM to model the human's control, but assumed additionally

that the human's behavior was characterized by sampling, data reconstruction and extrapolation

operations at his input. This model was motivated by evidence in some research that human

sampling is intermittent The introduction of a sampler explains the observed presence of fre-

quencies at the human s output which are not in the input signal. Additionally. tht inclusion of a

first order hold models the human's ability to extrapolate in the absence of stimulation (note that

this ability is also modeled by the OCM). This model structure is supported by experimental

results when the input frequency is high ( I cps), but in general for lower frequencies a continu-

ous model is adequate.

In some control systems it has been observed that humans display bang-bang behavior.

This mav be due to the nature of the controller, or some aspect of the controlled element. For

example, Young and Meiry 1965 ',ote that "when the human operator is placed in a control task

with a difficult high order controlled element requiring considerable lead compensation on his

part for stable closed- loop operation, his tracking becomes quite non-linear even with a continu-

ous control stick." Systems of this type motivated their development of a simple on off model for

hruman behavior. This non-linear model has proven to be useful for certain controlled elements in

systems in which minor perturbations are not important, and it is rather the operator's task to

etahlish a limit cycle to keep the s~stem within alloxable bounds

F'imie state models have also bwen proposed to modei hurriar, control in somt tasks. Rekey

and ANigel 196 proposed a model in which the operator is modeled as a finite stale machine

*hic- switches among the states based on the states (if the , ,tern: Burnham and lekeN 1,476

used this general approach to model the hurmarn dri er in a .ingle-lane. (a following ti.k Thc
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states of thle S'stem %ere quantitized to yield a four-state system model. A decision logic wa-s

aociated % ith ea( h. Examples of states the. used are:

0 tht car is at a desired velocity but is too close to the lead car

* the car is at the desired relative position but is mo'ing up on the lead car.

r)eiails of the decision logic are presented in the reference. This approach ma be usefu! wher

meaningful q lantization of all or part of the system is possible.

These are just a few% of nonlinear, discrete approaches to human controller modeling. There

are many m.to, each developed for a very specific reason. Johannsen ;1976., for example, pro-

posed - model which incorporated threshold elements and decision elements to account for

human. physiological characteristics. In summary, these models have led to promising results for

the specific tasks or situations for which they were developed. They are not, however, generall

suited to or easily adapted to new systems. They tend to be dynamically dependent: a change in

system dynamics can result in a change in model structure. The non-linear nature of the models

additionally introduces other drawbacks for many tasks. Parameter identification and closed

loop performance analyses of the type to be performed in the TOV-analNsis program. are much

more difficult to accomplish when non-linearities are in the loop. This makes the models more

difficult to develop and to use. If feasible, a standard approach for which a well developed theory

exists is thus preferable for the current TOV modeling, task.
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3. THE GENERALIZED OPERATOR MODEL

The dy namic model of an encounter involving a TOV contains se'. 'ral interconnected suW-

modeis. Sorne of these have been discussed in greater or lesser detail ir the preceding sections of

this report The vehicle. etc. are conveniently described b) stochastic differential equations. The

completed encounter model requires a compatible model for the remote operator.

The previous section reviews several alternative %ays in which a human operator has been

modelled Ahen engaged in tracking and control tasks. because it permits the inclusion of both

tim( variability and randomness, the formalism leading to the optimal control model (OCM) is

attractive. The classical O(CM is a linear stochastic differential equation, and is therefore. easily

incided Aith the other sub-models to form the full encounter state. The weighting parameters

in the performance index can be selected to cause the OC.N to mimic the behavior of an actual

operator.

, hile the OCM has been used successfully in diverse applications, it is a "short time" model

of human response. It has been found to be most suitable when a trained operator is performing

a Aell-defined task in a familiar environment. His primary function is noise reduction. There is

little opportunity to use his decision making capability in the context of his assigned task

The remote operator of a TOV must respond to more varied stimuli than does his counter-

part assigned a conventional pointing-and-tracking task. He must utilize the capabilities of the

TOV in an unpredictable environment. This charge requires more of the operator's ability to

identify the relevant characteristics of a time varying and ambiguous scene. Thus, he is required

not only to follow a target as it meanders within his field of view, but he must additionally iden-

tifv sudden changes in target motion, or any other e%ents which infliw-,ce the dvnamic structure

of the encounter.

In this study the operator still acts reflexiiely in the sense des ribed earlier. The remote

operator is assumed to have a good understanding of Ihe rurreni scenarjm. and to have plan of the

appropriate actions which he should take. His uncertairit about the current state of the
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(rcounter has two distinct components. On the one hand, he uses his observations to estimate

hr. siate of the primary constituents of the encounter; e.g. the center-line of the path to be fol-

lo, ed. the position and velocity of the target, etc. An analogous functional block is to be found

in the conventional OCM.

The second component of the TOV operator model results from the fact that certain

dynamic properties of the primitives of the encounter may change abruptly. Because the opera-

tor is assumed to be cognizant of the possible changes which may take place, it will be supposed

that the mode of evolution of the encounter is indicated by a random process {r,} with state

space {1 ...... N*}. The process {ri} will be thought of as delineating the current status of the

encounter, and { rt ) will be referred to as the feature process.

The inclusion of a feature process is not common in the literature on operator models. If

there is but one environment, the notion of a feature indicator is superfluous. Alternatively, if

the features change infrequently and are sufficiently unambiguous, the operator can be thought of

as adaptively changing his own behavior in concert with the exogenous process.

This section considers an intermediate situation in which the feature changes are sufficiently

frequent and equivocal that the operator must accomplish his desiderata in the presence of both

uncertainty in {rt} and significant modal transients. The resulting operator model is still

reflexive, but the time scale of the human intervention is extended beyond that of the OCM. To

distinguish these models, the description of the operator of the TOV will be termed the general-

ized operator model (GOM).

To be more specific, denote by z, the conventional dynamic state of the encounter including

components related to the targets, the path and the TOV. rhis portion of the system description

will be called the base state. Let 0, be an N-vector which indicates the current value of the

feature process;

( if rt =

= otherwise (3.1)

Then the encounter dynamics will be given by the joint dynamics of { z, } and {4,).
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Define an augmented encounter state {t } by

1" 0 f (3.2)

It Aill be assumed that the dynamics of the base state are given by an equation of thc form

dz1 - (A z - Bu,)dt - p'do, -- dw, (3.3)

where p' is a fixed n - N-matrix. The other variables in (3.3) have the same interpretation they

had in (y 37).

Before continuing it is well to review the implications of (3.3) and to contrast it with the

equation which gives rise to the OCM (see (2.37)). If there were no feature dependence, then

p = 0. In this event (3.3) becomes identical to (2.37). Alternatively, if the features are unchang-

ing. do, :0, then p'Ot -p 0 and (3.3) is equivalent to (2.37) with an additive bias. Such

dynamic structures are easily accommodated by the OCM.

Eciuation (3.3) differs from (2.37) in a fundamental way when {, } is variable. Suppose the

target su.ddenly accelerates. This would be indicated by a change in the component of {Q }

which corresponds to target acceleration, i.e.,

P'Ot .P'O - (3.4)

The base state contains a component (target acceleration) which experiences an abrupt change.

Ifie feature process {0 } will be assumed to be a Markov process with transition matrix

Q =

0o ; (A j
Prob(r,. a =J r, = i) q,1A o(A) (3,5)

The elements of Q have a simple, intuitive interpretation. The meat, lifetime in state i is

The prI.-,tbility that {ri } will make an t transitiorn is - q,j q,,. Consequently. the Markov

process hypothesis leads to a model whose parameters can be estimated from easily discernible

sample function characteristics of Jr }.
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To combint the dynamics of {z,) and {0,} into a suitable model, let (f),F,P) be the pro-

babilirN space on %,hich the exogenous process of the encounter model are defined. Let {F,} be

the filtration on O.x generated by {uw, r,}. Then {0) can be described by the stochastic

differential equation

do, = Q 'Idt -t din, (3.6)

Ahere { r,) is a purely discontinuous { F, }-martingale. Equations (3.3) and (3.6) can be com-

bined to form the external portion encounter dynamic model;

d ={A p'Q" zi (B

x, 0t Qi (), d+ Ut + )dw, '0' dm, (3.7)

or more compactly

d t = (Fr6 , - Gu1)dt + Fdw, + Fdm,  (3.8)

where the composite factors in (3.8) are identifiable in (3.7). It is frequently convenient to write

matrix relations in block form without the additional comment; e.g., if F r = [ 1 F2 , F11

would be interpreted as A, {F 12} as {p'Q '}, etc.

Equation (3.8) gives the intrinsic model of the external elements of the encounter. Note

again "hat (3.8) differs from (2.37) because of the discontinuous term {F, dm,}. The human

operator ties the disparate parts of the total system together through his reaction to observations

of the evolving engagement. The observation Latruct~ire will be assumed to have a decompositior

that conforms to the state decomposition indicated in (3.2). Denote the observation vector by

{y, }. Then, it will be assumed that

= H jdt + d '7 (3.9)

where b is an N-vector. {7, } is a vector Brownian motion, independent of {w,, m, }, and with
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intensity R > 0:

- t (3.10O)

Let the filtration generated by {y } be denoted by { Yt }.

The observation model given by (3.9). h&s the generic form that Aas used in the conven-

tional OCM (see (2.40)). Again the salient difference resides in the operator's reaction to the

feature vector. Equation (3.9) indicates that the operator observes a noisy version of the current

feature state. Feature i(r, i) is represented by a signal b, contaminated by an additive, wide-

band noise. The speed with which the operator can detect changes in features is related to the

size of b, (strength of the stimuli) and the size of the associated element of R (noise intensity).

These are parameters which will be used to tailor the model to the empirical response characteris-

tics of e operator. The OCM uses no feature information, and it is thus represented by (3.9)

without the {4, } component.

It is well to note that the observation model given by (3.9) is an intermediary for describing

the input-output behavior of the operator. It is not intended to describe the physiological

processes that occur within the operator. The ostensible "observation" in (3.9) characterizes an

illusory knowledge scate in the operator which is generated after he performs a stage of physiolog-

ical scene processing. Thus, while { y, } is an intermediary in formulating the GOM. it is not an

observation in a literal sense. The validity of (3.9) is based, therefore, on indirect measurements

of operator response, e.g. delays, false alarm rates etc., rather than on direct measurement of

scene stimuli.

A ith the formalism described in the previous section, the explicit description of the GOM

can be derived. The operator is assumed to act to minimize a quadratic performance index J

given by

J= E ( ,'Mqr + u,'Nu,)dr Y M 0. V :( 0 (3.11)
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In the previous section, it was shown that the conventional OCM consists of a cascade combina-

tion of t'~o blocks, a time-dependent processor creating an estimate of the base state, and a gain

block A hich creates the actuating signal therefrom. This latter is independent of the peculiarities

of the exogenous disturbances. Indeed, as %ill be shown, this block in the GOM is identical to

the corresponding block of the OCM.

The structure of the time-dependent processing is more complicated in this application. The

dynamic belavior of the GOM is governed by the equations which dt I !neate the first two condi-

tional moments of { ;

"t= EfIj Yj (3.12)

P,= Var I ',}

The requisite dynamics of the GOM are the stochastic equations which characterize the evolution

oft{q} and {P,}.

The equations of the time-dependent processor are derived in this section as a sequence of

propositions. Because the development is rather convoluted, the analytical details are provided

in the appendix. The most important of these results is given in Proposition 2. This proposition

provides a representation of the GOM.
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PROPOSITION 1. The exogenous processes {m, } and {u, } in (3.7) have the local moments;

E{dw, F, 0 (3.13a)

E{dn, F, =0 (3.13b)

(du')(du, ) : W dt (3.13c)

N

E(dmdm' F,) = E QO, ,dt (3.13d)
I- |

V(0, ) dt

Q, = - ,q, q, p, - diag (q,.)

vith o, the indicator of mode I. and q, the I'th row of Q.

As indicated above, {jm, } and {w, } are both {F, } martingales. Interestingly. the quadratic

variance of { m, } is a linear function of {o, while the quadratic variance of {u., } is constant.

The next proposition gives a reprcsentation of the estimation portion of the operator model.

It is phrased in terms of the innovations process {v }. Let

dv, dy, - dj, (3.141

From (3.9), this can be written as

dv, = H ,dt dot - H Idt

= H ,dt dr7 , (3.15)

where , is the estimation error process:

(3 16!

The fundarneritl resilt of this section is gilerj next
a



70-

P' )'i(.)ITION 2. The conditional mean process satisfies the equation

d = (F., -t Gut)dti + PH R 'd, (3.17)

Equation (3.17) gives the explicit form of the information processing block in the operator

M6,d 1. It has the functional form of a Kalman filter, although as will become apparent, there are

fundamental differences in these t.u estimators. These dissimilarities are made clearer in the

next proposition.

PROPOSITION 3. The error covariance satisfies the stochastic differential equation

dP, = (F.P, P,F F ", + , Q,FF,, F, - PH'R-'HP,)dt + dp, (3.18)
t=1

Po = E{ .,

where p, } is given b) the equation

dp, = ( 'OH'R-'dv, , . , NH R-dl,) (3.19)

po =0 U

The relationship between the GOM and the conventional OCM becomes clearer by reference

to Proposition 3. As mentioned earlier, the time-dependent processing done by the operator is

delineated by (3,17). This equation is identical for both operator models, although the implica-

tions are profoundly different. The OCM uses the Kalman gain which utilizes a covariance

matrix { P, } given by the solu: -n to

:P F )',. PF F, O'F, - PH R-HP, (3.20)

Equation (3.20) differs from (3.1Q) in two fundamental ways, the first rather obvious and

Ihe second more subtle The discreI- martingale jmn1  has no relevar,-P to the 0CM. and hence

makes no contribution to JP, } in (3.20). If (3 4) is compared to a linear. Gauss-Markov.
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tocliastic differential equation as given in (2.37), the most obvious difference is tha, the

Brownian motion term in (3.8) is augmented by arn orthogonal term. i.e.

Fdw 1 - F,,dui - F,,dmt

Hence. it might be conjectured that the quadratic variance term in (3.20) should be replaced b a

sum of terms in (3.18);

EJ(F~dw ) (F.du,,)" I Y,} - E{(Fdw)(F,.,dw)" (Fdm,) (Fdm,)' 1,1

or

F, WFW' -. F., WF - F, V'(0, )F"

This heuristic reasoning is validated b) (3.18). The trend term in P, 1 is given bN an equd-

tion that is identical to that which obtains in the Gaussian case. The onl, property of the feature

process that influences the trend in { P, } is its quadratic variance.

The forcing term in (3.18) has no analog in (3.20). The conditional co~ariance in the (;aus-

sian problem is independent of the observation process. In this application, :iowever. tne condi-

tional covariance {P, } is a random process. and hence the gain in the estimator given in (3.17) is

random as well Furthermore, (3.17) and as a consequence, the ()\M arf noninear functions of

the J y. } process. This again contrasts with both the 0CM and the transfer function models

decri bed earlier.

Equation (3.18) can be viewed as a Riccati equation driven by the observation process. To

gain r. ight into its behavior, suppose that w were conditional],, Gaussian If it has been a long

time since a feature change, this would be a good approximation of the actual distribution.

Because ,, is s mrnetric about its mean,

q ', =0 forall (3.21

Hence, (3.18) is equivalent to (3.20) with the substitution indicated in (3.21)
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Suppose. alternatively, that s is not symmetric about its mean. This will certainly be the

rat, when a feitur- transition is suspected. The forcing term {p,} will now cause the conditional

coariance to change. Interestingly, but not surprisingly, this change tends to be toward higher

co~a-larices and theice toward fastvr dynamics in the GONI. To see this, suppose that all of the

s stem %ar i;bles %ere scalar. Then

t R'11 dvt = - -H-R 'dt - noise

The* as. mrrmetr in ¢ is such that tends to have the same sign as " with the result that {P, }

tends to Increase.

I. the GO.M proposed here, tfe operator dynamic gain, PH 'R - 1, is a random process

because j P, } is driven by the innovations process {v, }. The responsiveness of the operator

changes as his evaluation of the situation changes. Hence, the operator model is nonlinear as well

as being time var)ing. It is the situation-dependent aspect of the model which makes this gen-

eralization so attractive. By contrast to other studies, the feature dependence of the GOM is not

ad hoc, but is instead a consequence of the feature dynamics.

The information processing portion of the.GOM given by (3.17)-(3.18) is not complete. The

factors which multiply dv, in (3L19) are conditional third moments of '. To finish the descrip-

tion of the estimation block, the structure of this conditional moment must be displayed.

As pointed out earlier, if " were Gaussian (the conventional OCM) this would be a trivial -

" ¢, 0 if q is Gaussian. Unfortunately, in this application the evolution of {p,} is more com-

plex.

PROPOSITION 4 Denote the conditional hird moment of c, by n,; specifically

fl(k) = 4 (3.22)

Then the equation for J P, ) can be written as
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dPP (FVP - PK - F. KF, FW E Q, o, F PH'R 'HP,)dt (3.23)

(1l(I])H'R dv, . . l(N n)H'R ldv,)

Further

dll(k)., = j3(k).qdt - (:(I,k) - AkH ')R dv, ; 1,2,..., N (3.24)

where f 3 (k) is given by (A.4.23), E(1, k) is given by (A.4.29) and

At,= (f& j) (3.25)

Equation (3-17), (3.18) and (3.24) give the dynamic equations of the (()\1 Tis model is

expressed as the solution to a set of three, coupled, stochastic differential equations. Vnfor-

tunatelk, the system of equations is not closed in the sense that a mechanism for evaluating A,'

has not been presented. Issues arising from the dependence of the GOM on A will Le addres-,ed ii

the next section.

The action block of the GOM is a relation between q and u,

PROPOSITION 5.

U1 = j GoM ( (326)

where

KGOM = N ' G ,C 3.27)

and J , t is given by

F. , L- E F, LU GV '( L i (A31)

T 0
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Proposition 5 completes the representation of the GOM. As was t:0e case in the OCM, the

nidti takes the form of a linear funci on of the conditional mean of ti:e encounter state. This

"gair." is iidependent of both the form and intensity of the exogenous processes. The d)namics

of the (;OI are those of the estimation process.

Before iea\ ing this topic, it is vell to note explicitlN the AaN in Ahich the GOM is related to

t l )(Al In most cases, the state penalty matrix M provides a weighting on only the base-state

co , rporier.ts.

, = 0 0 (3 .3 1 )

F ror: , 2. )

U, = - B ('Elli- 12 0) (3.32)

where

Under condition (3.31) though

-_I(E p'- Q (A E BN B1 1, (3.34)

r 1 2 (T) = 0

If Q is sufficiently small, then ,E2 will be small with the result iiat

U, " 1 " B _Iljt (3 Y"))

To first approximation then, the GOM is identical with he OCM The term : ir (3 321 i- a

corrtior, to the OCM which accounts for the d narncs of the feature pr(X ss

I No e tral LI, is al.5 .l ,e;,,ndent on the prop rte , of the feat ir, pro(ess

.t .ha .....



4.0 SIMPLIFICATION OF THE OPERATOR MODEL

I kv W M is gmen h% (3.17), (3 2K i 2- ad -0 26) Thle hurt three of these equab ons arv

,0o i d~t I( . ITIdtrix e1id! in-t. (I lci . g'' l rrr d~ntuj. V hr examrple. is in an I%-ii

t: ;. -,at rix wt ivre ri !- tht d im i or, it.o ttic- birist zT-i Iigher moments become evn trrlur-

r~rie>i~To ri~~ikc~ iode, ieu; in irvd, !i c1 ( )\ luerformi~~e. ecrtiiiisrrlhicmc

t)# 1* riCe-. TVhem rediictccrc-, inl cormn eulI take bct f,m of judiciu- dpprcoxili Itco(

v ac \C .t)'si iA. it h dt Imted~c the (,(YJ\1l

V'ce enmucnter state corlrairc- wc uIedr\, disc HW crie- 'Ii,.efirtou the ha,,v tatt r afiic Ct

fed ' I 1d I V 'I he 11u r ll %L "C 1C "t il the 'Cdrii Al clcv: ,I.t ccV i l~il hig ti ! ht i ; ~

u~ ii p[rit i .c i. e \aiiiain fie~ o ir~d I , dvieernrt ,~ :it '#,t ire- , .t

el 'rerfrori an obserianon J, mui fd a'rr il.. 'Ctke, I I w e wt At i: Iitt 4 *'t -

acc.- ..l ig k A: 4 -At': If\ 7 i

II J,' I i

-if ; 'v t I1- l a't, r "

t.; f Irv -t, ,~
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e~ljncring of the operator's signal processing has implications, with respect to the form

,I t wrT for c1 1.sing 14.2). the eq uat ion for c.can) be ,%ritten directly. This equi,-

gen in such references w. ElliottI ( 19(2 ) .To illustrate trie utilit ' of (3.117). the

(Jeri,~ ed froryi t hut genera, eqa i~ton, for

0,1 110% C~ Te d~nanua equaijorl for 1i, gux C. h

do, o'; dt 11 br I R 4t 0. dL' (4.5)

i ;at ion 4. prox idles at- important port ion of t he operator dynamics. It is a closed s\ s-

*e- cr o-( ,;atwn uor Oit .eris used earlier. but non~inear becaust of the product d ependente of the

~E(J:'e~m or; the right hand side of A ri)

P ' e P(atiw fwr . niu tw Aritteir.a

d:, i4z y o, - it a! I0' I'lli

* a! r, for P I)l rerluam-, to be so %ed. a t hougi[ thfit loA er right nand .1(~o

duag



5. CONCLUSIONS AND DIRECTION OF FUTURE EFFORT

I P report present, the (Ie~ lopriterit of o sxstern rnodel w.~hich w.ill be used] to siidN the

I ),rl n of a 'I () r. a niult t1ask erivironryi it Niodel- of those parts of the erR ouriter that a-re

t-r il to !hu remtott, ope-rat or targett' T0% . etc, are combined to form the base stat(-. -A

rn oda Ind icatoir Nec!or or feature state a giient s t he base state to formi t he encouint er state.

In order to qijant if\ the interaction between the 1'0V and its surroundings. a suitable model

fo he i)Lratr is required. Thie rnethodolog eniplo~ ed in thegnrtoofhecvnina

)(*\I iusied here to create a dynamc st rii(ti ire (t he (OW ()1Whose response nilmics that of a

muyol operd or r' Vgagt-i If g iiidare anid I ra,~ t as inr at, abrupt k changing en virunirnent

Trie (()N hias attractive properties IT- this application. The full state model, containing

bot i the operator and the encounter states. Is phrased In terms of a set of stochastic differential

equations. Such equations lend t herrsekes ;o digital siryiulation, thbus permittig an Investigation

of specihic scenarios. Fuirt her, such useful statistical measures of performance as the error covari-

arce , :,' are computed as part of the anaix sis procedure.

In the fort h( orninrg period, effort w ill bt devoted to completing the ("(A)I and to ista-

-g mulijti task applira'ions. Com pletion of he ( O\ requires the dv natm qainfr i

'Fhil ecluatIori gi,. en in (3.17) 'is a representational result rather than a comput ational recipe

Pc . ( IP Is not provided in a computationallvN feasible form. Even under the h~ potheses del-

7neaI Pd II, sectioni 4. oril the lo~ker right hand tWock is knowni explicitk.

, )rw. idle t tie requisite eq 'iat ions. sortie imripil h( at ion of t he t hird moment equation (3.24)

en Ssilr\ It I, proposed thai hli] ht iii rit, h) assuin irg that the conditional d iStT-ibutiori of c:

4- . it d 11ssa I AI d usI I( I .A-I-kSa i ri N- ),i m 0 ined earlier. t tif ('.j!san part ?'i4vs ti ole-

II I;1 I if - Aoere ( ,aussi~ ii. -An anai t n allN tractable approximnat ion to the

I; ki I j~~a part r an 'tin er is,#-t toC create a term rAi h ich car, he used to replace ( Ait in 13.24).

od;ri it ioning If - r,to separate partS wir il result in a finite dimensional operator model.
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Performance analysis of the TOV system is based upon the GOM. However, the imposition

of several simultaneous task requirements creates a distinctly different sort of dynamic structure

from that encountered when there is but one activity. To place this situation within the model

structure defined here. it will be assumed that the operator monitors his diverse tasks by sequenc-

ing his foveal direction. Specifically, suppose that the operator must perform two antithetical

tasks simultaneously, e.g follow an irregular path while simultaneously tracking an evasive target

at e large angular distance from the path. It will be supposed that the operator can focus his

attention in one of two directions;

dyi = HP, t dt + dr7 (5.1)

where

I if current foveal direction is along the path
Pt 2 if current foveal direction is toward the target. (5.2)

The indexing of the observations gives another dimension to the actuating signal; i.e. the

operator's action is now the pair {t,,p,} rather than only {ui} as in the GOM.

Without further restriction, (5.2) would lead rather quickly to degeneracies in the choice of

{P, }. Rapid switching in direction of observation would give rise to performance that is indistin-

guishable from that which obtains from dual fovea] observations; a physical impossibility if only

one operator is permitted. This anomaly can be avoided if every I -, 2 or 2 -, I transition in

{p, } must pass through another state p, = 3 such that

H3 = 0 (5,3)

The rate at which an intelligent operator will make changes in his direction of observation is

regulated by the lifetime in state 3.

This behavior is made most apparent if the properties of {P, } are explored. Partition {P, }

as



- 79-

Pill PI2

PI P112  (5.4)

P 21  P 22

where P.,, is the conditional error variance of the feature state (see (4.8)), P111 is the error vari-

ance of those components of the base state most relevant to task 1, and P11 2 is the same quantity

for the portion of the base state relevant to task 2.

The inherent flexibility of the GOM provides the means to quantify the behavior of the

operator even in the presence of variations in observation direction, To see this; note that the

dynamics o! { t } depend upon the matrix {Pi } with "faster" response associated with "greater"

uncertainty. To model the operator's reaction in the two-task application, it could be supposed

that the line-of-sight direction is changed whenever the performance of the unattended task

degrades to an unacceptable degree.

As an example of how this idea might be stated more precisely, denote by { U, } the cost in

the unattended task and suppose that

Tr Mill P111 if P-_ 2
U= Tr M1 1 2 P 1 2 if P =1 (5.5)

where Ml,, is a decomposition of M compatible with the decomposition of {P, } shown in (5.4).

Note that { Ut } need not be defined for {p, = 3} since this is a transition state.

The discrete portion of the operation algorithm can then be given by an inequality of the

form

dp, = 0 if 01 V (5.6)

where U is a threshold selected to distinguish acceptable from unacceptable performance. To the

extent that thi, line of research proves fruitful, the question then arises as to how small can U be

chosen in order that the operator model not become indeterminate; i.e. subject. to (56).

lim Tr Mll , P , > U ; 1, 2 (5.7)
t -00 O
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Switching procedures like that indicated in (5.6) have been used by other investigators in the

LQG context. In such references the switching sequence can be precomputed since {P, } is not

random. In the case under study, the evolution of { P, } is situation dependent, and the switching

times cannot be computed a priori. Further the statistical properties of the error variance are

not vet clearl. comprehended. Hence, the best form of the switching criterion cannot be defined

%%ith certaint. at this time.

Multiple task situations in which operator behavior is indeterminate arise when the work-

load is such that a single operator is unable to perform all tasks satisfactorily. Such a situation

presents arother interesting problem which can be investigated from the present perspective.

One method of maintaining operator workload at an acceptable level involves the introduction of

automation which is capable of performing some of the human's tasks. The multitask model for

human performance, when used with compatible models for proposed aids, will be of use in

predicting the performance of the augmented system. Various types of automation, deployed in

multiple configurations could be analyzed in terms of their utility in overall system performance

enhancement. Mode switching criteria similar to those proposed in the absence of automation

could be investigated. Such an avenue would provide an interesting application of the multitask

model now being developed.

The work proposed for the next year can be partitioned into two main areas of activity.

AREA 1. The GOM developed in the previous reporting period must be completed, simplified

and related to such empirical data as exists. The "completion" of the GOM has been discussed in

earlier sections. The model of the remote operator must be expressed as a finite dimensional set

of stochastic differential equations. This will be accomplished .Y approximating the probability

law of the base state as a sum of two specific parametric distributions.

The OCM has been observed to be rather more complicated than necessary. The analytical

approach leading to both the OCM and GOM is not a procedure which is parsimonious in the

number of free parameters in the model. If system simulation was the only use to be made of the
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model, this would merely be a nuisance. For a careful study of the TOV system, more is

req u i red.

To simplify the GOM, the "relevant" portion of the operator model must be distinguished

from the peripheral dynamics. The aim of this study is to predict system performance. not to

provide a highly accurate operator model. Hence, those aspects of the GOM which have marginal

influence on system performance should be deleted.

The indicated simplification and reduced parameterization of the GOM is essential if the

empirical data from the test facility is to be incorporated into the final model determination.

The operator can not be tested apart from the rest of the system. Further, the variables that del-

ireate tife (;O\1 are mathematical artifices Hence. the model parameters cai, onl. be indirectly

determined from experimental data. To reduce the ambiguity of the relationship between the

model and the empirical data, the model must be reduced to a small set of physically substantive

parameters. Such a representation makes more meaningful any sensitivity study based upon the

GOM.

AREA 2. The system description must be expanded to a multitask environment using the pro,-

cedures discussed earlier, Both nonrandom, time dependent attention switching as was done

with the OCM - and situation dependent attention switching based on {P, } will be investigated.

The latter is clearly the most apropos, but to arrive at definitive conclusions, the dynamic

behavior of the covariance equations must be better understood.

It is expected that the proposed work will complement the ongoing experimental activity of

the TOV test facility. The modelling activity proposed here will be enriched by an interaction

and technical interchange with the test personnel The results of this effort will also aid them in

dhe development of test protocols.
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APPENDIX

PROPOSITION I. Since {m,} and {w,} are F,)} martingales, (3.13a)-(3.13b) follow immedi-

aitel. Further {u- } is Brownian motion, and hence (3.13c). To show (3.13d), observe that if

m , makes an i j transition at time t,

I if k z I and k, I {i,j}

drydin = 1 if k = I{1,j} (A.1.1)
0 otherwise

H ence if r t _ .

-q,k dt if 1=i

-q, 1 dt if k=:
E {dmkdm I-} = qF, dt if k = 1 i (A.1.2)

-q, dt if k = I=

Let q, be the i'th row of the Q matrix. Then if 0t-., = 1

E {dmtdm, F,} (-q,. -, + diag (q,.) )dt (A.1.3)

= Q, dt

where Q, is the matrix indicated in (A1.3). It then follows that

N

E { din, dm, F-} - Q, - dt (A.1.4)
i=1

=V(0 t ) dt

The quantity on the right side of (A1.4) is called dm, mn). Note that

dm,-dm d-m (dmdm, d >, m),

= d'm,m), + d,,.,
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%khere jm 1 1 } is a matrix martingale, i.e.

E {(dm11,), F 0 (A 1.5)

PROPOSITION 2. As indicated in (3.3)

d = (F11t  Gu )dt- martingale increment (A.2.1

From Krishnan (1984), Thm. 8.5.11

d'q = (Fr1 1 - Gt,) dt R- (y, 1 H') -'dvi (A.2.2)

where it has been noted that { u, } is adapted to { )' } and that { w, } and {r i} are independent.

Equation (A.2.2) is equivalent to (3.17).

PROPOSITION 3. The derivation of (3.18) is as follows. From (3.3) and (3,12) the error pro-

cess q satisfies

d F + F,..dm -t- F. dw - PH'R-'d vi (A.3.1)

since P, = , it is first necessary to obtain an equation for j "' It is known that

d -,-,)= (d', r, + ,(d-r' + (dt, (d', (A,3.2)

Expanding (A.3.1), and using the fact that

(dvi) (dv,') = ndt (A.3.3)

it follows that
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(F, - PH'R-'H)' + '(Ff - PHR-'H)' - F, WF. F, V(4)Fm'

+ PH 'R -IHP dt - F,, dm I F, Fdf - PH'R d r "  F. dw

dr 'Fm ' 'd,"F.' - -dq'R-'HF (A.3.4)

% here

dm 1 = dmdm," - V(0)dt

Note the q' is a symmetric matrix. Let us consider the k'th column at pg';

= -.. - ) (A.3.5)

The equation of evolution of k is given by the k'th column of (A.3.4). He: ce,

d q = ((F1 .- PH'R-H)P)., + (P (F,- PH'R-'H)')., * (F. WF,").,

+ (F. V(),-).k + (PH'R-'HP).k I dt + (dm' F .k

" (Fm dm q" )., + ' q, H'R-dv, (A.3.6)

where the fact that (F,., dmI Fm ').k is a martingale increment and that

E (P H'R-'dr7' ').,k d Y' 1  = 0 (A.3.7)

has been used. Combining the columns of k, and noting that dm q" = 0, it follows that

dP = (F rP + PFj - PH'R- HP F,.wFW + F. i-,, ) dt + dp, (A.3.8)

where

dp, = ( H'R-ldv, .... , H 'R-d,.



PlROPOITION 4. Beginning as in Proposition 3. consider first the dN narnic equation of the con-

(i lioal product " . As indicated previou,-k

d (¢ CA) (d ¢ ) - ¢ (d ) (d < )(d (A.4.)

The term d ib gm~eri in (A.3.4) arid

d ( F k dt - (F,,dn)k- (F,,du'), - (PH'R-'di,) (A.4.2)

There are many terms in expansion (A.4.1). and it is well to look at them individually

(d> )Ck (F. Ptt R 'H)C- -' - (F,- PH'R-'H) ,dt

(Fmdm - F, dw - PH R -dr) -' k s k (F.dm - F. dw - PH 'R-dr)

(F, WF F,, VF'm PH' R 'HP) dt FndmF,,. (A.4.3)

" (d k) k(F )dt + (Fn dm)k - (Fdw)k - (PH R' (H'dt + diy,) )

(F PH' R-H)), dt - , (Fdm -t- F,,dw - PH 'R-' dt7)k (A.-.4)

Finally. if we neglect trivial terms

(d ')(d k) (FmdmiFm -- Fdrn' +qdm'F," (Fdm)k

(F. dw( qdw F. (Fdu)k

- (PH'R- dq ' -'d, R-'HP)(PH' R dT7)k (A.4.5)

Equations (A.4.3h(A.4.5) give us the basic terms that we need. It is, however, convenient

to simplify some of the terms involved before combining them into (A.4.1 ). Consider the second

order terms in (A.4.5).
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Fm Fm FA 1 dmn, dm A

SimilarlN

(F. m f2Fm'. (F,.drfl k: Fm,, dm .,q Fm,5 FFk dm,

- ~ Fm, 8dm10 ~rn~(A.4.7)

But

dml,1 6dm, = drnadm6dm. ~- 1'.,dm,,dt

=. d,- .dmn dm, (A.4.8)

Hence

(F. dm IF.'). (Fmdm ) k ~ F..F. F,m,,dm 0dmdm. (A. 4.9)

Combining (A.4.6) and (A.4.9)

(F,.dm IF1- + F,.dm( +-dmF,j,(F,,dm) k F,,wF',,k dm, dmA

F .) m dm dm rnA F,,F Fm, 6dm,,dm gdm. (A. 4. 10)

Si milIariv



-91-

(F~, du,, (F,,dw)k ( .Fdw, c~ ~ ( F~kA du,,

AA

Hence

(F~,du ' du ') (,Fdw)k = F., F,~, A ,,] 'Fwk A A dt (A.4.12)

Finalkl

(PH R-'di7 ( )' (PH 'R-d7)k = (PH 'R-'),, d,7, (PH 'R')kA d,7,)

E (PH R-')aj (PH'R')kk~ d 1~ dr/A
I'A

E (PH 'R -'),, (PH 'R)~ kI Rj, d
I'A

Consider next the expectation of the second order tern- :'

it follows that

'T It ' I



7 j b,4 f# 0* 7 NAVAI (KANSYSIIMS(INIIRSAN II(.O.('A 2F
I)PP RAT R MI. I1.I 1 ASK INC, STUDIY (JR RFMOhI.LY NOS TD 1084
PI RAT:1 PI ATI ORM4S BY: KS IIAAIANI). DD1 SWORW'R UNCLASSIFIEDI

APR 1987

MEN"E.



- 92 -

(Ad(k))d = di F,,j, Fn dmi dmA A + F,,j t Fk A dmi dmA
LA

+ E F, F,rFL dm ,dm#dm. (A.4.16)

T ;en

(df') (dsk) = A(k) dt (A.4.17)

From the above it is possible to evaluate the third conditional moment. First note that

d(~'~k) = "'" ((Ff - PH'R-H)'"k + ( (F - PH'R-'H)0)k)

+ (Ff- PH'R-H)'f'('fk + ('(Fdm + Fwdw)k

+ "q(F~drn + F,dw)') + ((Fmdm + F,dW)k' + (Fmdm + F.dw))' "

- ' PH 'R-1d7)k + "f (PH 'R-d)') - ((PH'R-'d)k " + (PH'R-d)-fk) '

+ F.dm dm ' F. + A(k) dt + martingale increment terms (A.4.18)

The expectation of the right hand side of (A.4.18) can be produced as follows. Define

E ( I Y ) = n(k) (A.4.19)

Then

'(F - PH 'R'H)' = fl(k)(F,- PH'R-'H)

f"((Ff - PH"R-'H) ) = "'(Fr - PH"R-'H)m "

= n(/)(F, - PH 'R-'H)id (A.4.20)

Similarly

"(j (F dm + F.dto)k + "f (Fodm + F.dw)') = c5 (Fmdm)k (A.4.21)

+ fq dm 'Fm'= 0 (A.4.21)

f (C' (PH R-d7) + fk (PH 'R-dl)') = 0 (A.4.22)
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Hence the expectation of the right side of (A.4.18) becomes

d(f' ) = (n(k)(F,- PH'R-'H)' + (Fe- PH'R-'H) n(k)

+ r H(I)(F,- PH*R-'H)kj - A(k)dt+ F. dmdm'F,,,

= 3 (k) (A.4.23)

To obtain the gain term in the dynamic equation for l(k), consider the I'th column of

nl(k).

n(k) = (n(k)., . n(k)..

Then

dn(k)., = (] 3 (k))., dt + K(n, k, 1) R-'d (A.4.24)

where

K(n, k,l1) dt = d 4(q( ).j 1") -(''~k. q H" dt (A.4.25)

Only the terms involving j7 in (A.4.18) contribute to d P7' Again, there are many

terms which must be evaluated.

((' (PH'R-'dt)k). d 7 ' )j = ", - d7 (PH'R-1 )k. drT.
a

5- (PH 'R-')ko Ro, dt

= , (PH')k, dt = , ( (HP).k ),, dt (A.4.26)
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= (PH 'R 1 '),#Rp dt

=j q (PH')1 , dt

5k W((HP).1 ),, di (A.4.27)

Consequently

"(((PH 'R~d,~. d7' ),, + (((PH'R di 7 )' )., q dv7 ),,

Pit (PH')k, di + ik, (PH'),, (A.4.28)

Combining these terms

d 17') d (P., (PH I)k + P.ht(PH). + (HP).k P1. + (HP) 1 Ph.) di (A.4.29)

Hence

dfl(k)., 1 I 3(k)., di + [ (P'f(PH')h. + P.k(PH')1 . + (HP)API.

wee+ 
(HP).,Pk.) + Ak, H ] R-'dv, (A.4.30)

AM (s (A.4.31)



- 95 -

PROPOSITION 5. This proposition follows directly from a decomposition of costs like that per-

formed in iTse (1971)1. Note that if r > t

E { 'M ,7 1'--} = E E{ 7 'M , Y,} Y

E E{ M Y } _Yt+E{ M Y,}

=E{,'M,+ TrMP, Y,} (A 5.1)

Hence

Jt = E f ('Mf + u,'Nu, )drI Y t E f MPdri r Y, (A.5.2)

1t I

Equation (A.3.8) indicates that {P,} is independent of the control policy. Consequently, {u,

should be selected to minimize the first term in (A.5.2).

Some care must be exercised in the indicated minimization because the dynamics of q are

not linear, e.g. {Pt } depends upon {I v } in .(A.2.2). Define

H = E f Mf,-t uNu?)d r Y, (A.5.3)

Ht = "M t" ut Nu,)dt -- dHt, (A.5.4)

Suppose that {H, } has the form

H, = , Et , t 8, (A.5.4)

with {E,, s, } satisfying the usual assumptions

dH, = 2 ,'Etd , + qj'E, q, + , (d,(d

= 2 ,'Ej ((Fr, + Gu,)dt + P,H'R-'d, ) + (q,'El ', dt
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- Tr EtPH'R-'HPt

= (2' (E,F, + -,)t +2"'G,u, -+ + TrZE1PH'R-1HP,)dt

+ 2 S, PH'd v (A.5.6)

But the last term in (A.5.6) is a martingale increment, and the representation of (H' } is in the

form developed in 'Tse, 19711. The solution to the regulation problem is well known:

Ut =- 'E, - " (A.5.7)

where

t = -F rIE - EtFr + EIBR-±B"Ej - M (A.5.8)

Er. =- 0

PROPOSITION 6. Specializing (A.2.2) to the {0 } subsystem, it follows that

d = Q' dt + P~bRT' dvo (A.6.1)

where

dvo - dyo- b d dt (A.6.2)

But

= diag { , "' , ) - "(A.6-3)

Define

f - diag (b3 , bN) (A.6.4)

Then

', di Q" (B, - b,I)¢, R,' d, (A.6.5)
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